Difference between revisions of "User:Tohline/SSC/IsothermalCollapse"
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Collapse of Isothermal Spheres= {{LSU_HBook_header}} We begin with …') |
|||
Line 40: | Line 40: | ||
* [http://adsabs.harvard.edu/abs/1985MNRAS.214....1W A. Whitworth & D. Summers (1985, MNRAS, 214, 1 - 25)]: ''Self-Similar Condensation of Spherically Symmetric Self-Gravitting Isothermal Gas Clouds'' | * [http://adsabs.harvard.edu/abs/1985MNRAS.214....1W A. Whitworth & D. Summers (1985, MNRAS, 214, 1 - 25)]: ''Self-Similar Condensation of Spherically Symmetric Self-Gravitting Isothermal Gas Clouds'' | ||
* [http://adsabs.harvard.edu/abs/1993ApJ...416..303F Prudence N. Foster & Roger A. Chevalier (1993, ApJ, 416, 303)]: ''Gravitational Collapse of an Isothermal Sphere'' | * [http://adsabs.harvard.edu/abs/1993ApJ...416..303F Prudence N. Foster & Roger A. Chevalier (1993, ApJ, 416, 303)]: ''Gravitational Collapse of an Isothermal Sphere'' | ||
* [http://adsabs.harvard.edu/abs/2013RMxAA..49..127R A. C. Raga, J. C. Rodríguez-Ramírez, A. Rodríguez-González, V. Lora, & A. Esquivel (2013, Revista Mexicana de Astronomía y Astrofísica, 49, 127-135)]: ''Analytic and Numerical Calculations of the Radial Stability of the Isothermal Spheres'' | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 16:37, 7 July 2017
Collapse of Isothermal Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
We begin with the set of time-dependent governing equations for spherically symmetric systems, namely,
Equation of Continuity
<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>
Euler Equation
<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>
Poisson Equation
<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho \, ,</math>
but, in place of the adiabatic form of the 1st Law of Thermodynamics, we enforce isothermality both in space and time by adopting the isothermal equation of state,
<math>~P = c_s^2 \rho \, ,</math>
where, <math>~c_s</math>, is the isothermal sound speed.
See Especially
- M. V. Penston (1969, MNRAS, 144, 425): Dynamics of Self-Gravitating Gaseous Sphers - III. Analytic Results in the Free-Fall of Isothermal Cases
- Richard B. Larson (1969, MNRAS, 145, 271): Numerical Calculations of the Dynamics of Collapsing Proto-Star
- F. H. Shu (1977, ApJ, 214, 488-497): Self-Similar Collapse of Isothermal Spheres and Star Formation
- C. Hunter (1977, ApJ, 218, 834-845): The Collapse of Unstable Isothermal Spheres
- A. Whitworth & D. Summers (1985, MNRAS, 214, 1 - 25): Self-Similar Condensation of Spherically Symmetric Self-Gravitting Isothermal Gas Clouds
- Prudence N. Foster & Roger A. Chevalier (1993, ApJ, 416, 303): Gravitational Collapse of an Isothermal Sphere
- A. C. Raga, J. C. Rodríguez-Ramírez, A. Rodríguez-González, V. Lora, & A. Esquivel (2013, Revista Mexicana de Astronomía y Astrofísica, 49, 127-135): Analytic and Numerical Calculations of the Radial Stability of the Isothermal Spheres
© 2014 - 2021 by Joel E. Tohline |