Difference between revisions of "User:Tohline/SR/PoissonOrigin"

From VistrailsWiki
Jump to navigation Jump to search
Line 37: Line 37:
</table>
</table>
</div>
</div>
where, {{ User:Tohline/Math/C_GravitationalConstant }} is the Newtonian gravitational constant.
where, {{ User:Tohline/Math/C_GravitationalConstant }} is the universal gravitational constant.


Now, in the astrophysics literature, it is customary to adopt the following definition of the,
Now, in the astrophysics literature, it is customary to adopt the following definition of the,
Line 135: Line 135:
   <td align="center" colspan="3">
   <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-5)
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-5)
  </td>
</tr>
</table>
</div>
=Drawn from Other Wiki Pages=
It is clear, therefore, that Chandrasekhar uses the variable <math>~\vec{u}</math> instead of <math>~\vec{v}</math> to represent the inertial velocity field.  More importantly, he adopts a different variable name ''and a different sign convention'' to represent the gravitational potential, specifically,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~ - \Phi = \mathfrak{B} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ G \int\limits_V \frac{\rho(\vec{x}^{~'})}{|\vec{x} - \vec{x}^{~'}|} d^3x^' \, .</math>
  </td>
</tr>
</table>
</div>
Hence, care must be taken to ensure that the signs on various mathematical terms are internally consistent when mapping derivations and resulting expressions from [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] into this H_Book.
&hellip; which <font color="#007700">expresses simply the conservation of the angular momentum of the system</font>.  The symmetric part of the tensor expression gives what is generally referred to as (see [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] for details) the,
<div align="center">
<span id="PGE:TVE"><font color="#770000">'''Tensor Virial Equation'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{1}{2} \frac{d^2 I_{ij}}{dt^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi \, ,</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>], p. 23, Eq. (51)<br />
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 213, Eq. (4-78)
   </td>
   </td>
</tr>
</tr>

Revision as of 00:43, 6 July 2017

Origin of the Poisson Equation

In deriving the,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

we will follow closely the presentation found in §2.1 of [BT87].


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

According to Isaac Newton's inverse-square law of gravitation, the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho(\vec{x}^{~'}) d^3x'</math>, as follows:

<math>~\vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' \, , </math>

[BT87], p. 31, Eq. (2-2)

where, <math>~G</math> is the universal gravitational constant.

Now, in the astrophysics literature, it is customary to adopt the following definition of the,

Scalar Gravitational Potential

<math>~ \Phi(\vec{x})</math>

<math>~\equiv</math>

<math>~ -G \int \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math>

[BT87], p. 31, Eq. (2-3)
[EFE], §10, p. 17, Eq. (11)
[T78], §4.2, p. 77, Eq. (12)

(Note:   As we have detailed in a separate discussion, throughout [EFE] Chandrasekhar adopts a different sign convention as well as a different variable name to represent the gravitational potential.) Recognizing that the gradient of the function, <math>~|\vec{x}^{~'} - \vec{x}|^{-1}</math>, with respect to <math>~\vec{x}</math> is,

<math>~\nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]</math>

<math>~=</math>

<math>~ \frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3} \, , </math>

[BT87], p. 31, Eq. (2-4)

and given that, in the above expression for the gravitational acceleration, the integration is taken over the volume that is identified by the primed <math>~(\vec{x}~{'})</math>, rather than the unprimed <math>~(\vec{x})</math>, coordinate system, we find that we may write the gravitational acceleration as,

<math>~\vec{a}(\vec{x})</math>

<math>~=</math>

<math>~\int G\rho(\vec{x}^{~'}) \nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x' </math>

 

<math>~=</math>

<math>~ \nabla_x \biggl\{ G \int \biggl[ \frac{\rho(\vec{x}^{~'}) }{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x'\biggr\}</math>

 

<math>~=</math>

<math>~-\nabla_x \Phi \, .</math>

[BT87], p. 31, Eq. (2-5)


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation