Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
Line 50: | Line 50: | ||
|- | |- | ||
! style="background-color:lightgreen;" colspan="2"|<font size="+1" | ! style="background-color:lightgreen;" colspan="2"|<b><font size="+1">Equilibrium Structure</font></b> | ||
|- | |- | ||
! style="text-align:center;" width="50%" |<b>Detailed Force Balance</b> | ! style="text-align:center;" width="50%" |<b><font color="maroon" size="+1">①</font></b> <b>Detailed Force Balance</b> | ||
! style="text-align:center;" |<b>Free-Energy | ! style="text-align:center;" |<b><font color="maroon" size="+1">②</font></b> <b>Free-Energy Identification of Equilibria</b> | ||
|- | |- | ||
! style="vertical-align:top; text-align:left;" |Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of | ! style="vertical-align:top; text-align:left;" |Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of | ||
Line 126: | Line 126: | ||
</table> | </table> | ||
|- | |- | ||
! style="text-align:center;" |<b>Virial Equilibrium</b> | ! style="text-align:center;" |<b><font color="maroon" size="+1">③</font></b> <b>Virial Equilibrium</b> | ||
|- | |- | ||
! style="vertical-align:top; text-align:left;" | | ! style="vertical-align:top; text-align:left;" | | ||
Line 191: | Line 191: | ||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis</b></font> | ! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis</b></font> | ||
|- | |- | ||
! style="text-align:center;" width="50%" |<b>Perturbation Theory</b> | ! style="text-align:center;" width="50%" |<b><font color="maroon" size="+1">④</font></b> <b>Perturbation Theory</b> | ||
! style="text-align:center;" |<b>Free-Energy Analysis</b> | ! style="text-align:center;" |<b><font color="maroon" size="+1">⑤</font></b> <b>Free-Energy Analysis of Stability</b> | ||
|- | |- | ||
Line 292: | Line 292: | ||
|- | |- | ||
! style="text-align:center;" width="50%" |<b>Variational Principle</b> | ! style="text-align:center;" width="50%" |<b><font color="maroon" size="+1">⑥</font></b> <b>Variational Principle</b> | ||
|- | |- | ||
Line 385: | Line 385: | ||
|- | |- | ||
! style="text-align:center;" width="50%" |<b>Approximation: Homologous Expansion/Contraction</b> | ! style="text-align:center;" width="50%" |<b><font color="maroon" size="+1">⑦</font></b> <b>Approximation: Homologous Expansion/Contraction</b> | ||
|- | |- | ||
Line 410: | Line 410: | ||
|} | |} | ||
=See Also= | =See Also= |
Revision as of 22:40, 20 June 2017
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
| |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | |||||||||||||||||||
① Detailed Force Balance | ② Free-Energy Identification of Equilibria | ||||||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| ||||||||||||||||||
③ Virial Equilibrium | |||||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
| |||||||||||||||||||
Stability Analysis | |||||||||||||||||||
④ Perturbation Theory | ⑤ Free-Energy Analysis of Stability | ||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
| ||||||||||||||||||
⑥ Variational Principle | |||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| |||||||||||||||||||
⑦ Approximation: Homologous Expansion/Contraction | |||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |