Difference between revisions of "User:Tohline/SSC/Synopsis"
(3 intermediate revisions by the same user not shown) | |||
Line 70: | Line 70: | ||
<tr> | <tr> | ||
<!-- FIRST COLUMN --> | <!-- FIRST COLUMN --> | ||
<td align="left | <td align="left"> | ||
<table border="0" cellpadding="5" align="left"> | <table border="0" cellpadding="5" align="left"> | ||
<tr> | <tr> | ||
Line 266: | Line 266: | ||
<!-- END 1ST LEFT STABILITY COLUMN --> | <!-- END 1ST LEFT STABILITY COLUMN --> | ||
<!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | <!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | ||
<td align="left" rowspan="5"> | |||
The second derivative of the free-energy function is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2 \mathfrak{G}}{dR^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-2aR^{-3} + (3-3\gamma)(2-3\gamma)b R^{1-3\gamma} + 6cR | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | <td align="left"> | ||
<math>~\frac{1}{R^2}\biggl[ | |||
2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | |||
<td align="right"> | |||
<math>~3(\gamma-1)U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3P_e V - W_\mathrm{grav} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{d^2\mathfrak{G}}{dR^2}\biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2W_\mathrm{grav} - (2-3\gamma)\biggl[3P_e V - W_\mathrm{grav} \biggr] + 6P_e V | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 276: | Line 333: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~</math> | <math>~(4-3\gamma)W_\mathrm{grav} + 3^2\gamma P_e V \, . | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 282: | Line 340: | ||
</td> | </td> | ||
<!-- END 1ST RIGHT STABILITY COLUMN --> | <!-- END 1ST RIGHT STABILITY COLUMN --> | ||
</tr> | |||
<tr> | |||
<th align="center" width="50%"> | |||
Variational Principle | |||
</th> | |||
</tr> | |||
<!-- BEGIN ANOTHER MAJOR STABILITY ROW --> | |||
<tr> | |||
<!-- BEGIN 2ND LEFT STABILITY COLUMN --> | |||
<td align="left"> | |||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, | |||
<div align="center"> | |||
<font color="#770000">'''Governing Variational Relation</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_0^R 4\pi r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr | |||
- \int_0^R 4\pi (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- 4\pi \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R | |||
- \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_0^R x^2 \biggl(\frac{d\ln x}{d\ln r}\biggr)^2 \gamma 4\pi r^2P dr | |||
- \int_0^R (3\gamma - 4)x^2 \biggl( - \frac{GM_r}{r} \biggr) 4\pi \rho r^2 dr | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggr[\gamma 4\pi r^3 Px^2 \biggl(-\frac{d\ln x}{d\ln r}\biggr) \biggr]_0^R | |||
- \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\omega^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\gamma (\gamma -1) \int_0^R x^2 \bigl(\frac{d\ln x}{d\ln r}\bigr)^2 dU_\mathrm{int} | |||
- \int_0^R (3\gamma - 4)x^2 dW_\mathrm{grav} | |||
+ 3^2 \gamma x^2 P_eV}{ \int_0^R x^2 r^2 dM_r} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td> | |||
<!-- END 1ST LEFT STABILITY COLUMN --> | |||
</tr> | |||
<tr> | |||
<th align="center" width="50%"> | |||
Approximation: Homologous Expansion/Contraction | |||
</th> | |||
</tr> | |||
<!-- BEGIN ANOTHER MAJOR STABILITY ROW --> | |||
<tr> | |||
<!-- BEGIN 2ND LEFT STABILITY COLUMN --> | |||
<td align="left"> | |||
If we ''guess'' that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\omega^2 \int_0^R r^2 dM_r</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(4- 3\gamma) W_\mathrm{grav}+ 3^2 \gamma P_eV \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td> | |||
</tr> | </tr> | ||
</table> | </table> |
Latest revision as of 18:47, 18 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||||
|
|||||||||||||||||||
Equilibrium Structure |
|||||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
|
|||||||||||||||||||
Stability Analysis |
|||||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
||||||||||||||||||
Variational Principle |
|||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
|
|||||||||||||||||||
Approximation: Homologous Expansion/Contraction |
|||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |