Difference between revisions of "User:Tohline/SSC/Synopsis"
Line 70: | Line 70: | ||
<tr> | <tr> | ||
<!-- FIRST COLUMN --> | <!-- FIRST COLUMN --> | ||
<td align="left | <td align="left"> | ||
<table border="0" cellpadding="5" align="left"> | <table border="0" cellpadding="5" align="left"> | ||
<tr> | <tr> | ||
Line 267: | Line 267: | ||
<!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | <!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | ||
<td align="left" rowspan="3"> | <td align="left" rowspan="3"> | ||
The second derivative of the free-energy function is, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~</math> | <math>~\frac{d^2 \mathfrak{G}}{dR^2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 276: | Line 277: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~</math> | <math>~ | ||
-2aR^{-3} + (3-3\gamma)(2-3\gamma)b R^{1-3\gamma} + 6cR | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{R^2}\biggl[ | |||
2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~3(\gamma-1)U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3P_e V - W_\mathrm{grav} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{d^2\mathfrak{G}}{dR^2}\biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2W_\mathrm{grav} - (2-3\gamma)\biggl[3P_e V - W_\mathrm{grav} \biggr] + 6P_e V | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(4-3\gamma)W_\mathrm{grav} + 3^2\gamma P_e V \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 18:36, 18 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||||
|
|||||||||||||||||||
Equilibrium Structure |
|||||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
|
|||||||||||||||||||
Stability Analysis |
|||||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
||||||||||||||||||
Variational Principle |
|||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
|
See Also
© 2014 - 2021 by Joel E. Tohline |