Difference between revisions of "User:Tohline/SSC/Synopsis"
Line 293: | Line 293: | ||
<!-- BEGIN 2ND LEFT STABILITY COLUMN --> | <!-- BEGIN 2ND LEFT STABILITY COLUMN --> | ||
<td align="left"> | <td align="left"> | ||
Multiply the LAWE through by <math>~x dr</math>, and integrate over the volume of the configuration gives the, | Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, | ||
<div align="center"> | <div align="center"> | ||
<font color="#770000">'''Governing Variational Relation</font><br /> | <font color="#770000">'''Governing Variational Relation</font><br /> | ||
Line 307: | Line 307: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\int_0^R r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr | \int_0^R 4\pi r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr | ||
- \int_0^R (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr | - \int_0^R 4\pi (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr | ||
</math> | </math> | ||
</td> | </td> | ||
Line 322: | Line 322: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R | - 4\pi \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R | ||
- \int_0^R \omega^2 \rho r^4 x^2 dr \, . | - \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . | ||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_0^R x^2 \biggl(\frac{d\ln x}{d\ln r}\biggr)^2 \gamma 4\pi r^2P dr | |||
- \int_0^R (3\gamma - 4)x^2 \biggl( - \frac{GM_r}{r} \biggr) 4\pi \rho r^2 dr | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggr[\gamma 4\pi r^3 Px^2 \biggl(-\frac{d\ln x}{d\ln r}\biggr) \biggr]_0^R | |||
- \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 329: | Line 359: | ||
</table> | </table> | ||
</div> | </div> | ||
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\omega^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\gamma (\gamma -1) \int_0^R x^2 \bigl(\frac{d\ln x}{d\ln r}\bigr)^2 dU_\mathrm{int} | |||
- \int_0^R (3\gamma - 4)x^2 dW_\mathrm{grav} | |||
+ 3^2 \gamma x^2 P_eV}{ \int_0^R x^2 r^2 dM_r} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td> | </td> | ||
<!-- END 1ST LEFT STABILITY COLUMN --> | <!-- END 1ST LEFT STABILITY COLUMN --> |
Revision as of 18:06, 18 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||
|
|||||||||||||||||
Equilibrium Structure |
|||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||
Virial Equilibrium | |||||||||||||||||
|
|||||||||||||||||
Stability Analysis |
|||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
|
||||||||||||||||
Variational Principle |
|||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
|
See Also
© 2014 - 2021 by Joel E. Tohline |