Difference between revisions of "User:Tohline/SSC/Synopsis"
Line 266: | Line 266: | ||
<!-- END 1ST LEFT STABILITY COLUMN --> | <!-- END 1ST LEFT STABILITY COLUMN --> | ||
<!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | <!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | ||
<td align="left"> | <td align="left" rowspan="3"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
Line 282: | Line 282: | ||
</td> | </td> | ||
<!-- END 1ST RIGHT STABILITY COLUMN --> | <!-- END 1ST RIGHT STABILITY COLUMN --> | ||
</tr> | |||
<tr> | |||
<th align="center" width="50%"> | |||
Variational Principle | |||
</th> | |||
</tr> | |||
<!-- BEGIN ANOTHER MAJOR STABILITY ROW --> | |||
<tr> | |||
<!-- BEGIN 2ND LEFT STABILITY COLUMN --> | |||
<td align="left"> | |||
Multiply the LAWE through by <math>~x dr</math>, and integrate over the volume of the configuration gives the, | |||
<div align="center"> | |||
<font color="#770000">'''Governing Variational Relation</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_0^R r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr | |||
- \int_0^R (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R | |||
- \int_0^R \omega^2 \rho r^4 x^2 dr \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td> | |||
<!-- END 1ST LEFT STABILITY COLUMN --> | |||
</tr> | </tr> | ||
</table> | </table> |
Revision as of 16:02, 18 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||
|
|||||||||||||||||
Equilibrium Structure |
|||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||
Virial Equilibrium | |||||||||||||||||
|
|||||||||||||||||
Stability Analysis |
|||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
|
||||||||||||||||
Variational Principle |
|||||||||||||||||
Multiply the LAWE through by <math>~x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
|
See Also
© 2014 - 2021 by Joel E. Tohline |