Difference between revisions of "User:Tohline/SSC/Synopsis"
Line 5: | Line 5: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
<table border="1" cellpadding="8" width="85%" align="center"> | <table border="1" cellpadding="8" width="85%" align="center"> | ||
<tr> | <tr> | ||
<td align="center" colspan="2"> | <td align="center" colspan="2" bgcolor="lightgreen"> | ||
<b>Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion</b> — adiabatic index, <math>~\gamma</math> | <font size="+1"><b>Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion</b></font> — adiabatic index, <math>~\gamma</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 49: | Line 51: | ||
</tr> | </tr> | ||
</table> | </table> | ||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="2" bgcolor="lightgreen"> | |||
<font size="+1"><b>Equilibrium Structure</b></font> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 216: | Line 223: | ||
</table> | </table> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="center" colspan="2" bgcolor="lightgreen"> | |||
<font size="+1"><b>Stability Analysis</b></font> | |||
</td> | |||
</tr> | |||
<tr> | |||
<th align="center" width="50%"> | |||
Perturbation Theory | |||
</th> | |||
<th align="center"> | |||
Free-Energy Analysis | |||
</th> | |||
</tr> | |||
<!-- BEGIN MAJOR STABILITY ROW --> | |||
<tr> | |||
<!-- BEGIN 1ST LEFT STABILITY COLUMN --> | |||
<td align="left"> | |||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the [[User:Tohline/SSC/VariationalPrinciple#Ledoux_and_Pekeris_.281941.29|eigenvalue problem defined]] by the, | |||
<div align="center"> | |||
<font color="#770000">'''LAWE: Linear Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{dr}\biggl[ r^4 \gamma P ~\frac{dx}{dr} \biggr] | |||
+\biggl[ \omega^2 \rho r^4 + (3\gamma - 4) r^3 \frac{dP}{dr} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. | |||
</td> | |||
<!-- END 1ST LEFT STABILITY COLUMN --> | |||
<!-- BEGIN 1ST RIGHT STABILITY COLUMN --> | |||
<td align="left"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
<!-- END 1ST RIGHT STABILITY COLUMN --> | |||
</tr> | </tr> | ||
</table> | </table> |
Revision as of 15:47, 18 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||
|
|||||||||||||||||
Equilibrium Structure |
|||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||
Virial Equilibrium | |||||||||||||||||
|
|||||||||||||||||
Stability Analysis |
|||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
|
See Also
© 2014 - 2021 by Joel E. Tohline |