Difference between revisions of "User:Tohline/SSC/Synopsis"

From VistrailsWiki
Jump to navigation Jump to search
Line 6: Line 6:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


 
<table border="1" cellpadding="8" width="85%" align="center">
<table border="1" cellpadding="8" width="95%" align="center">
<tr>
<tr>
   <td align="center" colspan="4">
   <td align="center" colspan="2">
<b>Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion</b> &#8212; adiabatic index, <math>~\gamma</math>
<b>Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion</b> &#8212; adiabatic index, <math>~\gamma</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td align="center" colspan="4">
   <td align="center" colspan="2">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
Line 53: Line 52:
</tr>
</tr>
<tr>
<tr>
   <th align="center">
   <th align="center" width="50%">
Detailed Force Balance
Detailed Force Balance
  </th>
  <th align="center" colspan="2">
Virial Equilibrium
   </th>
   </th>
   <th align="center">
   <th align="center">
Line 64: Line 60:
</tr>
</tr>


<!--  BEGIN MAJOR 4th ROW -->
<tr>
<tr>
<!--                                          FIRST COLUMN -->
   <td align="left" width="25%">
   <td align="left" width="25%">
<table border="0" cellpadding="5" align="left">
<table border="0" cellpadding="5" align="left">
Line 79: Line 77:
</table>
</table>
   </td>
   </td>
  <td align="left" colspan="2">
<!--                                          THIRD COLUMN -->
<table border="0" cellpadding="5" align="left">
  <td align="left" rowspan="3">
<tr>
The Free-Energy is,
  <td align="left">
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~0</math>
<math>~\mathfrak{G}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 93: Line 89:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>
<math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math>
   </td>
   </td>
</tr>
</tr>
Line 104: Line 100:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>
<math>~-a R^{-1} + bR^{3-3\gamma}+ cR^3 \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
Therefore, also, 
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{d\mathfrak{G}}{dR}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 115: Line 114:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-\int_0^R\biggl[ \frac{d}{dr}\biggl( 4\pi r^3P \biggr) - 12\pi r^2 P\biggr] dr + W_\mathrm{grav}</math>
<math>~aR^{-2} +(3-3\gamma)bR^{2-3\gamma} + 3cR^2</math>
   </td>
   </td>
</tr>
</tr>
Line 126: Line 125:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\int_0^R 3\biggl[ 4\pi r^2 P \biggr]dr - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math>
<math>~\frac{1}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math>
   </td>
   </td>
</tr>
</tr>
</table>
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>.  Hence, equilibria are defined by the condition,
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 137: Line 139:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3(\gamma-1)U_\mathrm{int}  + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math>
<math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</td>
  </td>
</tr>
<!--  END MAJOR 4th ROW -->
<tr>
  <th align="center">Virial Equilibrium</th>
</tr>
</tr>
</table>
<tr>
  </td>
   <td align="left">
   <td align="left">
<table border="0" cellpadding="5" align="left">
<table border="0" cellpadding="5" align="left">
<tr>
<tr>
   <td align="left">
   <td align="left">
The Free-Energy is,
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\mathfrak{G}</math>
<math>~0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 159: Line 164:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math>
<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>
   </td>
   </td>
</tr>
</tr>
Line 170: Line 175:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-a R^{-1} + bR^{3-3\gamma}+ cR^3 \, .</math>
<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>
   </td>
   </td>
</tr>
</tr>
</table>
Therefore, also, 
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{d\mathfrak{G}}{dR}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 184: Line 186:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~aR^{-2} +(3-3\gamma)bR^{2-3\gamma} + 3cR^2</math>
<math>~-\int_0^R\biggl[ \frac{d}{dr}\biggl( 4\pi r^3P \biggr) - 12\pi r^2 P\biggr] dr + W_\mathrm{grav}</math>
   </td>
   </td>
</tr>
</tr>
Line 195: Line 197:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math>
<math>~\int_0^R 3\biggl[ 4\pi r^2 P \biggr]dr - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math>
  </td>
</tr>
</table>
   </td>
   </td>
</tr>
</tr>
</table>
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>.  Hence, equilibria are defined by the condition,
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~0</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 212: Line 208:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math>
<math>~3(\gamma-1)U_\mathrm{int}  + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math>
   </td>
   </td>
</tr>
</table>
</td>
</tr>
</tr>
</table>
</table>

Revision as of 04:28, 18 June 2017


Spherically Symmetric Configurations Synopsis

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math>

<math>~dV = 4\pi r^2 dr</math>    and     <math>~dM_r</math>

<math>~=~</math>

<math>\rho dV ~~~\Rightarrow ~~~M_r = 4\pi \int_0^r \rho r^2 dr</math>

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r ~~ \propto ~~ R^{-1}</math>

<math>~U_\mathrm{int}</math>

<math>~=</math>

<math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr ~~ \propto ~~ R^{3-3\gamma}</math>

Detailed Force Balance

Free-Energy Analysis

Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>

for the radial density distribution, <math>~\rho(r)</math>.

The Free-Energy is,

<math>~\mathfrak{G}</math>

<math>~=</math>

<math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math>

 

<math>~=</math>

<math>~-a R^{-1} + bR^{3-3\gamma}+ cR^3 \, .</math>

Therefore, also,

<math>~\frac{d\mathfrak{G}}{dR}</math>

<math>~=</math>

<math>~aR^{-2} +(3-3\gamma)bR^{2-3\gamma} + 3cR^2</math>

 

<math>~=</math>

<math>~\frac{1}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math>

Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,

<math>~0</math>

<math>~=</math>

<math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math>

Virial Equilibrium

Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:

<math>~0</math>

<math>~=</math>

<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>

 

<math>~=</math>

<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>

 

<math>~=</math>

<math>~-\int_0^R\biggl[ \frac{d}{dr}\biggl( 4\pi r^3P \biggr) - 12\pi r^2 P\biggr] dr + W_\mathrm{grav}</math>

 

<math>~=</math>

<math>~\int_0^R 3\biggl[ 4\pi r^2 P \biggr]dr - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math>

 

<math>~=</math>

<math>~3(\gamma-1)U_\mathrm{int} + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation