Difference between revisions of "User:Tohline/SSC/Synopsis"
Line 35: | Line 35: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r</math> | <math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r ~~ \propto ~~ R^{-1}</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 46: | Line 46: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr</math> | <math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr ~~ \propto ~~ R^{3-3\gamma}</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 80: | Line 80: | ||
</td> | </td> | ||
<td align="left" colspan="2"> | <td align="left" colspan="2"> | ||
<table border=" | <table border="0" cellpadding="5" align="left"> | ||
<tr> | <tr> | ||
<td align="left"> | <td align="left"> | ||
Line 127: | Line 127: | ||
<td align="left"> | <td align="left"> | ||
<math>~\int_0^R 4\pi \biggl[ 3r^2 P dr - d(r^3P)\biggr] + W_\mathrm{grav}</math> | <math>~\int_0^R 4\pi \biggl[ 3r^2 P dr - d(r^3P)\biggr] + W_\mathrm{grav}</math> | ||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\int_0^R 3\biggl[ 4\pi r^2 P dr \biggr] - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3(\gamma-1)U_\mathrm{int} + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 138: | Line 160: | ||
<tr> | <tr> | ||
<td align="left"> | <td align="left"> | ||
The Free-Energy is, | |||
< | <table border="0" cellpadding="5" align="center"> | ||
< | <tr> | ||
{{ | <td align="right"> | ||
</ | <math>~\mathfrak{G}</math> | ||
</td> | |||
</td> | <td align="center"> | ||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-a R^{-1} + bR^{3-3\gamma}+ cR^3 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Therefore, also, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\mathfrak{G}}{dR}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~aR^{-2} +(3-3\gamma)bR^{2-3\gamma} + 3cR^2</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
</table> | |||
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math> | |||
</td> | |||
</tr> | </tr> | ||
</table> | </table> |
Revision as of 22:52, 17 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations |
|||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||
Detailed Force Balance |
Virial Equilibrium |
Free-Energy Analysis |
|||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
See Also
© 2014 - 2021 by Joel E. Tohline |