Difference between revisions of "User:Tohline/SSC/Synopsis"

From VistrailsWiki
Jump to navigation Jump to search
Line 10: Line 10:
<tr>
<tr>
   <td align="center" colspan="4">
   <td align="center" colspan="4">
For Spherically Symmetric Configurations:
<b>Spherically Symmetric Configurations</b>
  </td>
</tr>
<tr>
  <td align="center" colspan="4">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
Line 89: Line 93:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV + \int_0^R r\biggl(\frac{GM_r}{r^2}\biggr)dV</math>
<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-\int_0^R 4\pi r^3 dP + W_\mathrm{grav}</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\int_0^R 4\pi \biggl[ 3r^2 P dr - d(r^3P)\biggr] + W_\mathrm{grav}</math>
   </td>
   </td>
</tr>
</tr>

Revision as of 21:48, 17 June 2017


Spherically Symmetric Configurations Synopsis

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Spherically Symmetric Configurations

<math>~dV = 4\pi r^2 dr</math>    and     <math>~dM_r</math>

<math>~=~</math>

<math>\rho dV ~~~\Rightarrow ~~~M_r = 4\pi \int_0^r \rho r^2 dr</math>

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r</math>

<math>~U_\mathrm{int}</math>

<math>~=</math>

<math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr</math>

Detailed Force Balance

Virial Equilibrium

Free-Energy Analysis

Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>

for the radial density distribution, <math>~\rho(r)</math>.

Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:

<math>~0</math>

<math>~=</math>

<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>

 

<math>~=</math>

<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>

 

<math>~=</math>

<math>~-\int_0^R 4\pi r^3 dP + W_\mathrm{grav}</math>

 

<math>~=</math>

<math>~\int_0^R 4\pi \biggl[ 3r^2 P dr - d(r^3P)\biggr] + W_\mathrm{grav}</math>

Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>

for the radial density distribution, <math>~\rho(r)</math>.

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation