Difference between revisions of "User:Tohline/SSC/Synopsis"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '__FORCETOC__ <!-- __NOTOC__ will force TOC off --> =Spherically Symmetric Configurations Synopsis= {{LSU_HBook_header}} <table border="1" cellpadding="8" width="95%" align="…')
 
Line 53: Line 53:
   </th>
   </th>
   <th align="center" colspan="2">
   <th align="center" colspan="2">
Globalization
Virial Equilibrium
   </th>
   </th>
   <th align="center">
   <th align="center">
Line 76: Line 76:
   </td>
   </td>
   <td align="left" colspan="2">
   <td align="left" colspan="2">
&nbsp;
<table border="5" cellpadding="5" align="left">
<tr>
  <td align="left">
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
&nbsp;
<math>~\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV + \int_0^R r\biggl(\frac{GM_r}{r^2}\biggr)dV</math>
  </td>
</tr>
</table>
</td>
</tr>
</table>
  </td>
  <td align="left">
<table border="0" cellpadding="5" align="left">
<tr>
  <td align="left">
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
<div align="center">
<font color="maroon"><b>Hydrostatic Balance</b></font><br />
{{ User:Tohline/Math/EQ_SShydrostaticBalance01 }}
</div>
for the radial density distribution, <math>~\rho(r)</math>.
</td>
</tr>
</table>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


=See Also=
=See Also=

Revision as of 21:11, 17 June 2017


Spherically Symmetric Configurations Synopsis

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


For Spherically Symmetric Configurations:

<math>~dV = 4\pi r^2 dr</math>    and     <math>~dM_r</math>

<math>~=~</math>

<math>\rho dV ~~~\Rightarrow ~~~M_r = 4\pi \int_0^r \rho r^2 dr</math>

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r</math>

<math>~U_\mathrm{int}</math>

<math>~=</math>

<math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr</math>

Detailed Force Balance

Virial Equilibrium

Free-Energy Analysis

Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>

for the radial density distribution, <math>~\rho(r)</math>.

Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:

<math>~0</math>

<math>~=</math>

<math>~\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV + \int_0^R r\biggl(\frac{GM_r}{r^2}\biggr)dV</math>

Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>

for the radial density distribution, <math>~\rho(r)</math>.

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation