Difference between revisions of "User:Tohline/Appendix/Ramblings/PowerSeriesExpressions"
(Begin mathematical appendix chapter that provides various approximate power-series expressions) |
|||
Line 31: | Line 31: | ||
</table> | </table> | ||
</div> | </div> | ||
Result: | |||
<div align="center" id="PolytropicLaneEmden"> | |||
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\theta</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 - \frac{n}{378} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^6 + \biggl[ \frac{n(122n^2 -183n + 70)}{3265920} \biggr] \xi^8 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
==Isothermal Lane-Emden Function== | ==Isothermal Lane-Emden Function== |
Revision as of 22:16, 25 February 2017
Approximate Power-Series Expressions
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Polytropic Lane-Emden Function
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation,
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
A general power-series should be of the form,
<math>~\Theta_H</math> |
<math>~=</math> |
<math>~ \theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + \cdots </math> |
Result:
|
Isothermal Lane-Emden Function
Displacement Function for Polytropic LAWE
Displacement Function for Isothermal LAWE
© 2014 - 2021 by Joel E. Tohline |