Difference between revisions of "User:Tohline/SSC/Stability/BiPolytrope0 0"
Line 5: | Line 5: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
== | ==Two Separate Eigenvectors== | ||
===Core=== | |||
<div align="center"> | |||
<math>~\alpha_c \equiv 3-\frac{4}{\gamma_c}</math><br /> | |||
<math>~g = \frac{1}{1+2q^3}</math> | |||
</div> | |||
<div align="center"> | |||
<table border="1" cellpadding="8"> | |||
<tr> | |||
<td align="center" colspan="1"> | |||
Mode | |||
</td> | |||
<td align="center" colspan="1"> | |||
Core Eigenvector | |||
</td> | |||
<td align="center"> | |||
<math>~\frac{3\omega_\mathrm{core}^2}{2\pi \gamma_c G \rho_c} = 2\alpha_c + 2j(2j+5)</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<math>~j=0 </math> | |||
</td> | |||
<td align="left"> | |||
<math>~x_\mathrm{core} = a_0 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~6-8/\gamma_c</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<math>~j=1 </math> | |||
</td> | |||
<td align="left"> | |||
<math>~x_\mathrm{core} = a_0 \biggl[ 1 - \frac{7}{5}\biggr(\frac{\xi^2}{g^2}\biggr) \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~20-8/\gamma_c</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<math>~j=2 </math> | |||
</td> | |||
<td align="left"> | |||
<math>~x_\mathrm{core} = a_0 \biggl[ 1 - \frac{18}{5}\biggr(\frac{\xi^2}{g^2}\biggr) + \frac{99}{35}\biggr(\frac{\xi^2}{g^2}\biggr)^2 \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~42-8/\gamma_c</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
=Related Discussions= | =Related Discussions= |
Revision as of 02:57, 15 December 2016
Radial Oscillations of a Zero-Zero Bipolytrope
This is a chapter that summarizes an accompanying, detailed derivation.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Two Separate Eigenvectors
Core
<math>~\alpha_c \equiv 3-\frac{4}{\gamma_c}</math>
<math>~g = \frac{1}{1+2q^3}</math>
Mode |
Core Eigenvector |
<math>~\frac{3\omega_\mathrm{core}^2}{2\pi \gamma_c G \rho_c} = 2\alpha_c + 2j(2j+5)</math> |
<math>~j=0 </math> |
<math>~x_\mathrm{core} = a_0 </math> |
<math>~6-8/\gamma_c</math> |
<math>~j=1 </math> |
<math>~x_\mathrm{core} = a_0 \biggl[ 1 - \frac{7}{5}\biggr(\frac{\xi^2}{g^2}\biggr) \biggr]</math> |
<math>~20-8/\gamma_c</math> |
<math>~j=2 </math> |
<math>~x_\mathrm{core} = a_0 \biggl[ 1 - \frac{18}{5}\biggr(\frac{\xi^2}{g^2}\biggr) + \frac{99}{35}\biggr(\frac{\xi^2}{g^2}\biggr)^2 \biggr]</math> |
<math>~42-8/\gamma_c</math> |
Related Discussions
© 2014 - 2021 by Joel E. Tohline |