Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/EFE Energies"

From VistrailsWiki
Jump to navigation Jump to search
(Clean up Table1 layout)
Line 354: Line 354:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~E</math>
<math>~E\biggl(\frac{b}{a}, \frac{c}{a}, \Omega, x\biggr)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 419: Line 419:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~E</math>
<math>~E\biggl(\frac{b}{a}, \frac{c}{a}, \frac{L}{M}, x\biggr)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 425: Line 425:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{a^2}{2} \biggl[\biggl(1+\frac{b}{a} \cdot x\biggr)^2 + \biggl(\frac{b}{a}+x\biggr)^2\biggr]\Omega^2 - 2I </math>
<math>~\frac{L^2}{2a^2} \biggl[ \biggl(1+\frac{b}{a}\cdot x \biggr)^2  
+ \biggl(\frac{b}{a}+x \biggr)^2 \biggr] \biggl[ 1 + \biggl(\frac{b}{a}\biggr)^2 + 2\biggl(\frac{b}{a}\biggr)x \biggr]^{-2} - 2I </math>
   </td>
   </td>
</tr>
</tr>
Line 431: Line 432:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~E</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 437: Line 438:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1}  \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{2/3} \biggl\{\frac{1}{2a^2} \biggl(\frac{5L}{M}\biggr)^2
<math>~\frac{L^2}{2} \biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1}  \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{-2/3}  
\biggl[\biggl(1+\frac{b}{a} \cdot x\biggr)^2 + \biggl(\frac{b}{a}+x\biggr)^2\biggr]
\biggl[ \biggl(1+\frac{b}{a}\cdot x \biggr)^2 + \biggl(\frac{b}{a}+x \biggr)^2 \biggr]  
\biggl[ 1 + \biggl(\frac{b}{a}\biggr)^2 + 2\biggl(\frac{b}{a}\biggr)x \biggr]^{-2} - \frac{2I}{a^2}\biggr\} \, ,</math>
\biggl[ 1 + \biggl(\frac{b}{a}\biggr)^2 + 2\biggl(\frac{b}{a}\biggr)x \biggr]^{-2} - 2\biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{2/3}\frac{I}{a^2} \, .</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~E</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2} \biggl(\frac{5L}{M}\biggr)^2 \frac{(a+bx)^2 + (b+ax)^2}{(a^2 + b^2 + 2abx)^2} - 2I \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Omega^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl(\frac{5L}{M}\biggr)^2 a^{-2}\biggl[ 1 + \biggl(\frac{b}{a}\biggr)^2 + 2\biggl(\frac{b}{a}\biggr)x \biggr]^{-2}</math>
  </td>
</tr>
</table>
</div>


<!--
<!--
Line 523: Line 494:
==Adopted Evolutionary Constraints==
==Adopted Evolutionary Constraints==


<div align="center">
<div align="center" id="Table1">
<table border="1" cellpadding="0" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
<th align="center" colspan="6">
<th align="center" colspan="1"><font size="+1">Figure 1:</font>  3D Free-Energy Surface &amp; Its Projection onto the <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> Plane
3D Free-Energy Surface &amp; Its Projection onto the <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> Plane
</th>
</th>
</tr>
</tr>
<tr><td align="center" colspan="3">
<tr><td align="center">
 
<table border="1" cellpadding="0" align="center">
<tr>
<td align="center" colspan="1"><font size="+1">&nbsp; (a) &nbsp;</font></td>
<td align="center" colspan="3">
[[File:JacobiPaperIFig3flipped.png|300px|Christodoulou1995Fig3 Flipped]]
[[File:JacobiPaperIFig3flipped.png|300px|Christodoulou1995Fig3 Flipped]]
</td>
</td>
<td align="center" colspan="3">
<td align="center" colspan="3">
[[File:VisTrailsFig3d.png|300px|Christodoulou1995Fig3 Flipped]]
[[File:VisTrailsFig3d.png|300px|Christodoulou1995Fig3 Flipped]]
</td></tr>
</td>
<tr><td align="center" colspan="6">
</tr>
<tr>
  <td align="center" colspan="1"><font size="+1">(b)</font></td>
  <td align="center" colspan="6">
[[File:VistrailsFig3b.png|600px|Christodoulou1995Fig3 Flipped]]
[[File:VistrailsFig3b.png|600px|Christodoulou1995Fig3 Flipped]]
</td></tr>
  </td>
</tr>
<tr>
<tr>
  <td align="center" colspan="1"><font size="+1">(c)</font></td>
   <td align="center" colspan="2">
   <td align="center" colspan="2">
[[File:OverlapAttempt3.png|200px|Jacobi Sequence]]
[[File:OverlapAttempt3.png|200px|Jacobi Sequence]]
Line 551: Line 531:
</td>
</td>
</tr>
</tr>
</table>
</td></tr>
</table>
</table>
</div>
</div>

Revision as of 17:00, 29 June 2016

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Properties of Homogeneous Ellipsoids (2)

In addition to pulling from §53 of Chandrasekhar's EFE, here, we lean heavily on the papers by M. D. Weinberg & S. Tremaine (1983, ApJ, 271, 586) (hereafter, WT83) and by D. M. Christodoulou, D. Kazanas, I. Shlosman, & J. E. Tohline (1995, ApJ, 446, 472) (hereafter, Paper I).

Sequence-Defining Dimensionless Parameters

A Riemann sequence of S-type ellipsoids is defined by the value of the dimensionless parameter,

<math>~f</math>

<math>~\equiv</math>

<math>~\frac{\zeta}{\Omega} = </math> constant,

[ EFE, §48, Eq. (31) ]
[ WT83, Eq. (5) ]
[ Paper I, Eq. (2.1) ]

where, <math>~\zeta</math> is the system's vorticity as measured in a frame rotating with angular velocity, <math>~\Omega</math>. Alternatively, we can use the dimensionless parameter,

<math>~x</math>

<math>~\equiv</math>

<math>~\biggl[\frac{ab}{a^2 + b^2} \biggr]f \, ,</math>

[ EFE, §48, Eq. (40) ]
[ Paper I, Eq. (2.2) ]

or,

<math>~\Lambda</math>

<math>~\equiv</math>

<math>~-\biggl[\frac{ab}{a^2 + b^2} \biggr] \Omega f = -\Omega x \, .</math>

[ WT83, Eq. (4) ]

Conserved Quantities

Algebraic expressions for the conserved energy, <math>~E</math>, angular momentum, <math>~L</math>, and circulation, <math>~C</math>, are, respectively,

<math>~E</math>

<math>~=</math>

<math>~\frac{1}{2}v^2 + \frac{1}{2}(a^2 + b^2)(\Lambda^2 + \Omega^2) - 2ab\Lambda\Omega - 2I </math>

 

<math>~\rightarrow</math>

<math>~\cancelto{0}{\frac{1}{2}v^2} + \frac{1}{2} [(a+bx)^2 + (b+ax)^2]\Omega^2 - 2I \, ,</math>

[ 1st expression — EFE, §53, Eq. (239) ]
[ 2nd expression — Paper I, Eq. (2.7) ]

where — see an accompanying discussion for the definitions of <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>,

<math>~I</math>

<math>~=</math>

<math>~A_1a^2 + A_2b^2 + A_3c^2 \, ;</math>

[ 1st expression — EFE, §53, Eq. (239) ]
[ 2nd expression — Paper I, Eq. (2.8) ]

<math>~\frac{5L}{M}</math>

<math>~=</math>

<math>~(a^2 + b^2)\Omega - 2ab\Lambda</math>

 

<math>~=</math>

<math>~ (a^2 + b^2 + 2abx)\Omega \, ;</math>

[ 1st expression — EFE, §53, Eq. (240) ]
[ 2nd expression — Paper I, Eq. (2.5) ]

<math>~\frac{5C}{M}</math>

<math>~=</math>

<math>~(a^2 + b^2)\Lambda - 2ab\Omega</math>

 

<math>~=</math>

<math>~- [2ab + (a^2 + b^2)x ]\Omega \, .</math>

[ 1st expression — EFE, §53, Eq. (241) ]
[ 2nd expression — Paper I, Eq. (2.6) ]

If we rewrite the expression for the system's free energy in terms of <math>~L</math> (and x) instead of <math>~\Omega</math> (and x), we have,

<math>~E</math>

<math>~=</math>

<math>~\frac{1}{2} \biggl(\frac{5L}{M}\biggr)^2 \frac{(a+bx)^2 + (b+ax)^2}{(a^2 + b^2 + 2abx)^2} - 2I \, ,</math>

[ Paper I, Eq. (3.4) ]


Note that, based on the units chosen in Paper I, <math>~M = 5</math>, and <math>~abc = 15/4</math>.

Aside: Chandra's Notation

According to equation (107) in §21 of EFE, it appears as though,

<math>~A_i - A_j</math>

<math>~=</math>

<math>~- (a_i^2 - a_j^2)A_{ij} \, .</math>

And, according to equation (105) in §21 of EFE, it appears as though,

<math>~B_{ij}</math>

<math>~=</math>

<math>~A_j - a_i^2A_{ij} \, .</math>

So, for example,

<math>~A_{12} </math>

<math>~=</math>

<math>~-\biggl[ \frac{A_1 - A_2}{a_1^2 - a_2^2} \biggr] \, ,</math>

and,

<math>~B_{12} </math>

<math>~=</math>

<math>~A_2 + a_1^2\biggl[ \frac{A_1 - A_2}{a_1^2 - a_2^2} \biggr] </math>

 

<math>~=</math>

<math>~\frac{(a_1^2 - a_2^2)A_2 + a_1^2(A_1 - A_2)}{a_1^2 - a_2^2} </math>

 

<math>~=</math>

<math>~\frac{a_1^2A_1 - a_2^2A_2 }{a_1^2 - a_2^2} \, .</math>

Free Energy Surface(s)

Scope

Consider a self-gravitating ellipsoid having the following properties:

  • Semi-axis lengths, <math>~(x,y,z)_\mathrm{surface} = (a,b,c)</math>, and corresponding volume, <math>~4\pi/(3abc)</math>  ; and consider only the situations <math>0 \le b/a \le 1</math> and <math>0 \le c/a \le 1</math>  ;
  • Total mass, <math>~M</math>  ;
  • Uniform density, <math>~\rho = (3 M)/(4\pi abc) </math>  ;
  • Figure is spinning about its c axis with angular velocity, <math>~\Omega</math>  ;
  • Internal, steady-state flow exhibiting the following characteristics:
    • No vertical (z) motion;
    • Elliptical (x-y plane) streamlines everywhere having an ellipticity that matches that of the overall figure, that is, <math>~e = (1-b^2/a^2)^{1/2}</math>  ;
    • The velocity components, <math>~v_x</math> and <math>~v_y</math>, are linear in the coordinate and, overall, characterized by the magnitude of the vorticity, <math>~\zeta</math>  .

Such a configuration is uniquely specified by the choice of six key parameters:   <math>~a</math>, <math>~b</math>, <math>~c</math>, <math>~M</math>, <math>~\Omega</math>, and <math>~\zeta</math>  .

Free Energy of Incompressible, Constant Mass Systems

We are interested, here, in examining how the free energy of such a system will vary as it is allowed to "evolve" as an incompressible fluid — i.e., holding <math>~\rho</math> fixed — through different ellipsoidal shapes while conserving its total mass. Following Paper I, we choose to set <math>~M = 5</math> — which removes mass from the list of unspecified key parameters — and we choose to set <math>~\rho = \pi^{-1}</math>, which is then reflected in a specification of the semi-axis, <math>~a</math>, in terms of the pair of dimensionless axis ratios, <math>~b/a</math> and <math>~c/a</math>, namely,

<math>~a^3</math>

<math>~=</math>

<math>~\frac{3Ma^2}{4\pi(bc)\rho} = \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1}\, .</math>

Moving forward, then, a unique ellipsoidal configuration is identified via the specification of four, rather than six, key parameters —   <math>~b/a</math>, <math>~c/a</math>, <math>~\Omega</math>, and <math>~x</math>   — and the free energy of that configuration is given by the expression,

<math>~E\biggl(\frac{b}{a}, \frac{c}{a}, \Omega, x\biggr)</math>

<math>~=</math>

<math>~\frac{a^2}{2} \biggl[\biggl(1+\frac{b}{a} \cdot x\biggr)^2 + \biggl(\frac{b}{a}+x\biggr)^2\biggr]\Omega^2 - 2I </math>

 

<math>~=</math>

<math>~\biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{2/3} \biggl\{\frac{1}{2} \biggl[\biggl(1+\frac{b}{a} \cdot x\biggr)^2 + \biggl(\frac{b}{a}+x\biggr)^2\biggr]\Omega^2 - \frac{2I}{a^2}\biggr\} \, ,</math>

where,

<math>~x</math>

<math>~\equiv</math>

<math>~\biggl[\frac{(b/a)}{1 + (b/a)^2} \biggr]\frac{\zeta}{\Omega} \, ,</math>

<math>~\frac{I}{a^2}</math>

<math>~=</math>

<math>~\biggl[A_1 + A_2\biggl(\frac{b}{a}\biggr)^2 + A_3\biggl(\frac{c}{a}\biggr)^2 \biggr] \, ,</math>

and the functional behavior of the coefficients, <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>, are given by the expressions provided in an accompanying discussion.


Alternatively, replacing <math>~\Omega</math> in favor of <math>~L</math>, we have,

<math>~E\biggl(\frac{b}{a}, \frac{c}{a}, \frac{L}{M}, x\biggr)</math>

<math>~=</math>

<math>~\frac{L^2}{2a^2} \biggl[ \biggl(1+\frac{b}{a}\cdot x \biggr)^2 + \biggl(\frac{b}{a}+x \biggr)^2 \biggr] \biggl[ 1 + \biggl(\frac{b}{a}\biggr)^2 + 2\biggl(\frac{b}{a}\biggr)x \biggr]^{-2} - 2I </math>

 

<math>~=</math>

<math>~\frac{L^2}{2} \biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{-2/3} \biggl[ \biggl(1+\frac{b}{a}\cdot x \biggr)^2 + \biggl(\frac{b}{a}+x \biggr)^2 \biggr] \biggl[ 1 + \biggl(\frac{b}{a}\biggr)^2 + 2\biggl(\frac{b}{a}\biggr)x \biggr]^{-2} - 2\biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{2/3}\frac{I}{a^2} \, .</math>


Adopted Evolutionary Constraints

Figure 1: 3D Free-Energy Surface & Its Projection onto the <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> Plane
  (a)  

Christodoulou1995Fig3 Flipped

Christodoulou1995Fig3 Flipped

(b)

Christodoulou1995Fig3 Flipped

(c)

Jacobi Sequence

Chandrasekhar Figure2

Christodoulou1995Fig3 Flipped

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation