Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/EFE Energies"

From VistrailsWiki
Jump to navigation Jump to search
(Begin new chapter discussing relevant energy components of EFEs)
 
(→‎Properties of Homogeneous Ellipsoids (2): Begin pulling from WT83 and Paper I)
Line 4: Line 4:


=Properties of Homogeneous Ellipsoids (2)=
=Properties of Homogeneous Ellipsoids (2)=
In addition to pulling from §53 of [[User:Tohline/Appendix/References#EFE|Chandrasekhar's EFE]], here, we lean heavily on the papers by [http://adsabs.harvard.edu/abs/1983ApJ...271..586W M. D. Weinberg & S. Tremaine (1983, ApJ, 271, 586)] (hereafter, WT83) and by [http://adsabs.harvard.edu/abs/1995ApJ...446..472C D. M. Christodoulou, D. Kazanas, I. Shlosman, & J. E. Tohline (1995, ApJ, 446, 472)] (hereafter, Paper I).
==Terminology==
A Riemann sequence of ''S''-type ellipsoids is defined by the value of the dimensionless parameter,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~f</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{\zeta}{\Omega} = </math> constant,
  </td>
</tr>
</table>
[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">&sect;48, Eq. (31)</font> ]<br />
[ [http://adsabs.harvard.edu/abs/1983ApJ...271..586W WT83], <font color="#00CC00">Eq. (5)</font> ]<br />
[ [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Paper I], <font color="#00CC00">Eq. (2.1)</font> ]<br />
</div>
where, <math>~\zeta</math> is the system's vorticity as measured in a frame rotating with angular velocity, <math>~\Omega</math>.  Alternatively, we can use the dimensionless parameter,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~x</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl[\frac{ab}{a^2 + b^2} \biggr]f \, ,</math>
  </td>
</tr>
</table>
[ [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Paper I], <font color="#00CC00">Eq. (2.2)</font> ]<br />
</div>
or,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Lambda</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~-\biggl[\frac{ab}{a^2 + b^2} \biggr] \Omega f \, .</math>
  </td>
</tr>
</table>
[ [http://adsabs.harvard.edu/abs/1983ApJ...271..586W WT83], <font color="#00CC00">Eq. (4)</font> ]<br />
</div>


==Relevant Energy Components==
==Relevant Energy Components==
Line 20: Line 85:


where,
where,


=See Also=
=See Also=

Revision as of 01:18, 15 June 2016

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Properties of Homogeneous Ellipsoids (2)

In addition to pulling from §53 of Chandrasekhar's EFE, here, we lean heavily on the papers by M. D. Weinberg & S. Tremaine (1983, ApJ, 271, 586) (hereafter, WT83) and by D. M. Christodoulou, D. Kazanas, I. Shlosman, & J. E. Tohline (1995, ApJ, 446, 472) (hereafter, Paper I).

Terminology

A Riemann sequence of S-type ellipsoids is defined by the value of the dimensionless parameter,

<math>~f</math>

<math>~\equiv</math>

<math>~\frac{\zeta}{\Omega} = </math> constant,

[ EFE, §48, Eq. (31) ]
[ WT83, Eq. (5) ]
[ Paper I, Eq. (2.1) ]

where, <math>~\zeta</math> is the system's vorticity as measured in a frame rotating with angular velocity, <math>~\Omega</math>. Alternatively, we can use the dimensionless parameter,

<math>~x</math>

<math>~\equiv</math>

<math>~\biggl[\frac{ab}{a^2 + b^2} \biggr]f \, ,</math>

[ Paper I, Eq. (2.2) ]

or,

<math>~\Lambda</math>

<math>~\equiv</math>

<math>~-\biggl[\frac{ab}{a^2 + b^2} \biggr] \Omega f \, .</math>

[ WT83, Eq. (4) ]


Relevant Energy Components

As has been explicitly demonstrated in Chapter 3 of EFE and summarized in Table 2-2 (p. 57) of BT87, for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form. Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>~(x,y,z) = (a_1,a_2,a_3)</math>,

<math> ~\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr], </math>

[ EFE, Chapter 3, Eq. (40)1,2 ]
[ BT87, Chapter 2, Table 2-2 ]

where,

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation