Difference between revisions of "User:Tohline/Cylindrical 3D/Linearization"
(→Eulerian Formulation of Nonlinear Governing Equations: Finished deriving vertical component of linearized Euler equation) |
(→Linearized Equations in Cylindrical Coordinates: Finished assembling summary table) |
||
Line 64: | Line 64: | ||
These match, for example, equations (3.1) - (3.4) of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P Papaloizou & Pringle] (1984, MNRAS, 208, 721-750), hereafter, PPI. | These match, for example, equations (3.1) - (3.4) of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P Papaloizou & Pringle] (1984, MNRAS, 208, 721-750), hereafter, PPI. | ||
==Linearization== | |||
If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become: | If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become: | ||
Line 281: | Line 282: | ||
</div> | </div> | ||
where the logic followed in deriving the last expression from the next-to-last one is directly analogous to [[#Linearizing_Radial_Component_of_Euler_Equation|the logic used, above]], in obtaining the final expression for the radial component of the linearized Euler equation. | where the logic followed in deriving the last expression from the next-to-last one is directly analogous to [[#Linearizing_Radial_Component_of_Euler_Equation|the logic used, above]], in obtaining the final expression for the radial component of the linearized Euler equation. | ||
===Linearizing Continuity Equation=== | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial\rho^'}{\partial t} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] | |||
- \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' + \rho^' \varpi {\dot\varphi}_0 \biggr] | |||
- \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] | |||
- \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr] | |||
- \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
===Summary=== | |||
<div align="center"> | |||
<table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<th align="center"> | |||
Set of Linearized Principal Governing Equations in Cylindrical Coordinates | |||
</th> | |||
</tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="8" align="center"> | |||
<tr><td align="center" colspan="3"><font color="#770000">'''Continuity Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] | |||
- \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr] | |||
- \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{\partial {\dot\varpi}^'}{\partial t} + | |||
( {\dot\varphi}_0 ) \frac{\partial {\dot\varpi}^'}{\partial\varphi} | |||
- 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) - \frac{\partial \Phi^'}{\partial \varpi} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">'''<math>\varphi</math> Component of Euler Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + | |||
( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + | |||
\frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">'''<math>~z</math> Component of Euler Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{\partial {\dot{z}}^'}{\partial t} | |||
+ (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) | |||
- \frac{\partial \Phi^'}{\partial z} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">'''Adiabatic Form of the 1<sup>st</sup> Law of Thermodynamics'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{P^'}{P_0}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \frac{\gamma \rho^'}{\rho_0} </math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">'''Poisson Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\nabla^2 \Phi^' | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4\pi G\rho^' | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr> | |||
</table> | |||
</div> | |||
=See Also= | =See Also= |
Latest revision as of 05:26, 12 March 2016
Linearized Equations in Cylindrical Coordinates
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Eulerian Formulation of Nonlinear Governing Equations
From our more detailed, accompanying discussion we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.
<math>\varpi</math> Component of Euler Equation
<math>
\frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] +
\biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] +
\biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 =
- \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi}
</math>
<math>\varphi</math> Component of Euler Equation
<math>
\frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] +
\biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] +
\biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi =
- \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
</math>
<math>z</math> Component of Euler Equation
<math>
\frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr]
+ \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] =
- \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z}
</math>
Equation of Continuity
<math>
\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0
</math>
These match, for example, equations (3.1) - (3.4) of Papaloizou & Pringle (1984, MNRAS, 208, 721-750), hereafter, PPI.
Linearization
If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become:
Linearizing Radial Component of Euler Equation
<math>~\frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( { {\dot\varphi}_0 + {\dot\varphi}^'})^2 </math> |
<math>~=</math> |
<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math> |
<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( {\dot\varphi}_0)^2 - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')</math> |
<math>~=</math> |
<math>~ - \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi} - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0} \biggr) - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi} </math> |
<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr] + \frac{\partial \Phi^'}{\partial \varpi} </math> |
<math>~=</math> |
<math>~\biggl\{ \varpi ( {\dot\varphi}_0)^2 - \frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi} \biggr\} </math> |
<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial \varpi} </math> |
<math>~=</math> |
<math>~0 \, . </math> |
This last expression has been obtained by recognizing that, in the next-to-last expression: (1) The terms inside the curly braces on the right-hand side collectively provide a statement of equilibrium (in the radial-coordinate direction) in the initial, unperturbed configuration and therefore the terms sum to zero; and (2) the terms inside square brackets on the left-hand side can be rewritten in a more compact form because we have adopted a polytropic equation of state to build the unperturbed initial equilibrium configuration and are examining only adiabatic perturbations with <math>~\gamma = (n+1)/n</math>, in which case,
<math>~\frac{\nabla P_0}{P_0} = \frac{(n+1)}{n} \cdot \frac{\nabla \rho_0}{\rho_0} \, ,</math> |
and |
<math>~\frac{P^'}{P_0} = \frac{\gamma \rho^'}{\rho_0} \, .</math> |
Linearizing Azimuthal Component of Euler Equation
Keeping in mind that the initial equilibrium configuration is axisymmetric — that is, equilibrium parameters exhibit no variation in the azimuthal direction — and, in addition, <math>~\dot\varphi_0</math> exhibits no variation in the vertical direction, we have,
<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( {\dot\varpi}^') \frac{\partial (\varpi\dot\varphi_0)}{\partial\varpi} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + ( {\dot\varpi}^') {\dot\varphi_0} </math> |
<math>~=</math> |
<math>~- \frac{1}{\varpi} \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial \varphi} + \frac{\partial \Phi^'}{\partial \varphi} \biggr]</math> |
<math>~\Rightarrow ~~~~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math> |
<math>~=</math> |
<math>~- \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr] \, .</math> |
Linearizing Vertical Component of Euler Equation
<math>~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} </math> |
<math>~=</math> |
<math>~ - \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial z} - \frac{\partial (\Phi_0+\Phi^')}{\partial z} </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{\rho_0}\frac{\partial P^'}{\partial z} - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial z}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0} \biggr) - \frac{\partial (\Phi_0+\Phi^')}{\partial z} </math> |
<math>~\Rightarrow~~~~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} + \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial z}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial z}\biggr] + \frac{\partial \Phi^'}{\partial z} </math> |
<math>~=</math> |
<math>~\biggl\{ - \frac{1}{\rho_0}\frac{\partial P_0 }{\partial z} - \frac{\partial \Phi_0}{\partial z} \biggr\} </math> |
<math>~\Rightarrow~~~~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} + \biggl[ \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial z} </math> |
<math>~=</math> |
<math>~0 \, , </math> |
where the logic followed in deriving the last expression from the next-to-last one is directly analogous to the logic used, above, in obtaining the final expression for the radial component of the linearized Euler equation.
Linearizing Continuity Equation
<math>~\frac{\partial\rho^'}{\partial t} </math> |
<math>~=</math> |
<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' + \rho^' \varpi {\dot\varphi}_0 \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] </math> |
<math>~\Rightarrow~~~~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi} </math> |
<math>~=</math> |
<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math> |
Summary
Set of Linearized Principal Governing Equations in Cylindrical Coordinates |
||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
See Also
© 2014 - 2021 by Joel E. Tohline |