Difference between revisions of "User:Tohline/Cylindrical 3D/Linearization"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Eulerian Formulation of Nonlinear Governing Equations: Finished linearizing varpi-component of Euler)
(→‎Linearized Equations in Cylindrical Coordinates: Finished assembling summary table)
 
(2 intermediate revisions by the same user not shown)
Line 64: Line 64:
These match, for example, equations (3.1) - (3.4)  of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P Papaloizou & Pringle] (1984, MNRAS, 208, 721-750), hereafter, PPI.
These match, for example, equations (3.1) - (3.4)  of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P Papaloizou & Pringle] (1984, MNRAS, 208, 721-750), hereafter, PPI.


==Linearization==


If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become,
If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become:
 
===Linearizing Radial Component of Euler Equation===
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 79: Line 82:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi}</math>
<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math>
   </td>
   </td>
</tr>
</tr>
Line 94: Line 97:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}  
<math>~
- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}  
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0}  \biggr)  
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0}  \biggr)  
- \frac{\partial \Phi_0}{\partial\varpi}</math>
- \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}
</math>
   </td>
   </td>
</tr>
</tr>
Line 104: Line 109:
<math>~\Rightarrow~~~~
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
{\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi}  
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
+ \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr]  
+ \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr]  
+ \frac{\partial \Phi^'}{\partial \varpi}
</math>
</math>
   </td>
   </td>
Line 114: Line 120:
   <td align="left">
   <td align="left">
<math>~\biggl\{  \varpi ( {\dot\varphi}_0)^2  
<math>~\biggl\{  \varpi ( {\dot\varphi}_0)^2  
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]
- \frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}  
- \frac{\partial \Phi_0}{\partial\varpi} \biggr\}
- \frac{\partial \Phi_0}{\partial\varpi} \biggr\}
</math>
</math>
Line 124: Line 130:
<math>~\Rightarrow~~~~
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
{\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi}  
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
+ \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr]  
+ \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial \varpi}
</math>
</math>
   </td>
   </td>
Line 137: Line 143:
   </td>
   </td>
</tr>
</tr>
</table>
</div>
This last expression has been obtained by recognizing that, in the next-to-last expression: (1) The terms inside the curly braces on the right-hand side collectively provide a statement of equilibrium (in the radial-coordinate direction) in the initial, unperturbed configuration and therefore the terms sum to zero; and (2) the terms inside square brackets on the left-hand side can be rewritten in a more compact form because we have adopted a polytropic equation of state to build the unperturbed initial equilibrium configuration and are examining only adiabatic perturbations with <math>~\gamma = (n+1)/n</math>, in which case,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\nabla P_0}{P_0} = \frac{(n+1)}{n} \cdot \frac{\nabla \rho_0}{\rho_0} \, ,</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~\frac{P^'}{P_0} = \frac{\gamma \rho^'}{\rho_0} \, .</math>
  </td>
</tr>
</table>
</div>
===Linearizing Azimuthal Component of Euler Equation===
Keeping in mind that the initial equilibrium configuration is axisymmetric &#8212; that is, equilibrium parameters exhibit no variation in the azimuthal direction &#8212; and, in addition, <math>~\dot\varphi_0</math> exhibits no variation in the vertical direction, we have,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( {\dot\varpi}^') \frac{\partial (\varpi\dot\varphi_0)}{\partial\varpi}  +
( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} +
( {\dot\varpi}^') {\dot\varphi_0} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{1}{\varpi} \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial \varphi} + \frac{\partial \Phi^'}{\partial \varphi} \biggr]</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} +
( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} +
\frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr]
\, .</math>
  </td>
</tr>
</table>
</div>
===Linearizing Vertical Component of Euler Equation===
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\frac{\partial {\dot{z}}^'}{\partial t}
+ (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} 
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial z} - \frac{\partial (\Phi_0+\Phi^')}{\partial z}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{1}{\rho_0}\frac{\partial P^'}{\partial z}
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial z}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0}  \biggr)
- \frac{\partial (\Phi_0+\Phi^')}{\partial z}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~
\frac{\partial {\dot{z}}^'}{\partial t}
+ (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} 
+ \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial z}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial z}\biggr]
+ \frac{\partial \Phi^'}{\partial z}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{
- \frac{1}{\rho_0}\frac{\partial P_0 }{\partial z}
- \frac{\partial \Phi_0}{\partial z} \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~
\frac{\partial {\dot{z}}^'}{\partial t}
+ (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} 
+ \biggl[ \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] 
+ \frac{\partial \Phi^'}{\partial z}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 \, ,
</math>
  </td>
</tr>
</table>
</div>
where the logic followed in deriving the last expression from the next-to-last one is directly analogous to [[#Linearizing_Radial_Component_of_Euler_Equation|the logic used, above]], in obtaining the final expression for the radial component of the linearized Euler equation.
===Linearizing Continuity Equation===
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial\rho^'}{\partial t}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr]
- \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' + \rho^' \varpi {\dot\varphi}_0 \biggr]
- \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr]
- \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr]
- \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, .
</math>
  </td>
</tr>
</table>
</div>
===Summary===
<div align="center">
<table border="1" cellpadding="5" align="center">
<tr>
  <th align="center">
Set of Linearized Principal Governing Equations in Cylindrical Coordinates
  </th>
</tr>
<tr><td align="center">
<table border="0" cellpadding="8" align="center">
<tr><td align="center" colspan="3"><font color="#770000">'''Continuity Equation'''</font></td></tr>
<tr>
  <td align="right">
<math>~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr]
- \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr]
- \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, .
</math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font></td></tr>
<tr>
  <td align="right">
<math>~
\frac{\partial {\dot\varpi}^'}{\partial t} +
( {\dot\varphi}_0 ) \frac{\partial {\dot\varpi}^'}{\partial\varphi}
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr)  - \frac{\partial \Phi^'}{\partial \varpi}
</math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''<math>\varphi</math> Component of Euler Equation'''</font></td></tr>
<tr>
  <td align="right">
<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} +
( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} +
\frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr]
</math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''<math>~z</math> Component of Euler Equation'''</font></td></tr>
<tr>
  <td align="right">
<math>~
\frac{\partial {\dot{z}}^'}{\partial t}
+ (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} 
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr)
- \frac{\partial \Phi^'}{\partial z}
</math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''Adiabatic Form of the 1<sup>st</sup> Law of Thermodynamics'''</font></td></tr>
<tr>
  <td align="right">
<math>~\frac{P^'}{P_0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{\gamma \rho^'}{\rho_0} </math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''Poisson Equation'''</font></td></tr>
<tr>
  <td align="right">
<math>~\nabla^2 \Phi^'
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
4\pi G\rho^'
</math>
  </td>
</tr>
</table>
</td></tr>
</table>
</table>
</div>
</div>


=See Also=
=See Also=




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 05:26, 12 March 2016


Linearized Equations in Cylindrical Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Eulerian Formulation of Nonlinear Governing Equations

From our more detailed, accompanying discussion we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.


<math>\varpi</math> Component of Euler Equation

<math> \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>


<math>\varphi</math> Component of Euler Equation


<math> \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>


<math>z</math> Component of Euler Equation

<math> \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>


Equation of Continuity

<math> \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>

These match, for example, equations (3.1) - (3.4) of Papaloizou & Pringle (1984, MNRAS, 208, 721-750), hereafter, PPI.

Linearization

If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become:

Linearizing Radial Component of Euler Equation

<math>~\frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( { {\dot\varphi}_0 + {\dot\varphi}^'})^2 </math>

<math>~=</math>

<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( {\dot\varphi}_0)^2 - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')</math>

<math>~=</math>

<math>~ - \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi} - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0} \biggr) - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi} </math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr] + \frac{\partial \Phi^'}{\partial \varpi} </math>

<math>~=</math>

<math>~\biggl\{ \varpi ( {\dot\varphi}_0)^2 - \frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi} \biggr\} </math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial \varpi} </math>

<math>~=</math>

<math>~0 \, . </math>

This last expression has been obtained by recognizing that, in the next-to-last expression: (1) The terms inside the curly braces on the right-hand side collectively provide a statement of equilibrium (in the radial-coordinate direction) in the initial, unperturbed configuration and therefore the terms sum to zero; and (2) the terms inside square brackets on the left-hand side can be rewritten in a more compact form because we have adopted a polytropic equation of state to build the unperturbed initial equilibrium configuration and are examining only adiabatic perturbations with <math>~\gamma = (n+1)/n</math>, in which case,

<math>~\frac{\nabla P_0}{P_0} = \frac{(n+1)}{n} \cdot \frac{\nabla \rho_0}{\rho_0} \, ,</math>

      and      

<math>~\frac{P^'}{P_0} = \frac{\gamma \rho^'}{\rho_0} \, .</math>


Linearizing Azimuthal Component of Euler Equation

Keeping in mind that the initial equilibrium configuration is axisymmetric — that is, equilibrium parameters exhibit no variation in the azimuthal direction — and, in addition, <math>~\dot\varphi_0</math> exhibits no variation in the vertical direction, we have,

<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( {\dot\varpi}^') \frac{\partial (\varpi\dot\varphi_0)}{\partial\varpi} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + ( {\dot\varpi}^') {\dot\varphi_0} </math>

<math>~=</math>

<math>~- \frac{1}{\varpi} \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial \varphi} + \frac{\partial \Phi^'}{\partial \varphi} \biggr]</math>

<math>~\Rightarrow ~~~~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr] \, .</math>


Linearizing Vertical Component of Euler Equation

<math>~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} </math>

<math>~=</math>

<math>~ - \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial z} - \frac{\partial (\Phi_0+\Phi^')}{\partial z} </math>

 

<math>~=</math>

<math>~ - \frac{1}{\rho_0}\frac{\partial P^'}{\partial z} - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial z}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0} \biggr) - \frac{\partial (\Phi_0+\Phi^')}{\partial z} </math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} + \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial z}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial z}\biggr] + \frac{\partial \Phi^'}{\partial z} </math>

<math>~=</math>

<math>~\biggl\{ - \frac{1}{\rho_0}\frac{\partial P_0 }{\partial z} - \frac{\partial \Phi_0}{\partial z} \biggr\} </math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} + \biggl[ \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial z} </math>

<math>~=</math>

<math>~0 \, , </math>

where the logic followed in deriving the last expression from the next-to-last one is directly analogous to the logic used, above, in obtaining the final expression for the radial component of the linearized Euler equation.

Linearizing Continuity Equation

<math>~\frac{\partial\rho^'}{\partial t} </math>

<math>~=</math>

<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' + \rho^' \varpi {\dot\varphi}_0 \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] </math>

<math>~\Rightarrow~~~~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi} </math>

<math>~=</math>

<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math>

Summary

Set of Linearized Principal Governing Equations in Cylindrical Coordinates

Continuity Equation

<math>~\frac{\partial\rho^'}{\partial t} + ( {\dot\varphi}_0 )\frac{\partial \rho^'}{\partial \varphi} </math>

<math>~=</math>

<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math>

<math>\varpi</math> Component of Euler Equation

<math>~ \frac{\partial {\dot\varpi}^'}{\partial t} + ( {\dot\varphi}_0 ) \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) - \frac{\partial \Phi^'}{\partial \varpi} </math>

<math>\varphi</math> Component of Euler Equation

<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr] </math>

<math>~z</math> Component of Euler Equation

<math>~ \frac{\partial {\dot{z}}^'}{\partial t} + (\dot\varphi_0) \frac{\partial {\dot{z}}^'}{\partial\varphi} </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) - \frac{\partial \Phi^'}{\partial z} </math>

Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^'}{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma \rho^'}{\rho_0} </math>

Poisson Equation

<math>~\nabla^2 \Phi^' </math>

<math>~=</math>

<math>~ 4\pi G\rho^' </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation