Difference between revisions of "User:Tohline/Cylindrical 3D/Linearization"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Eulerian Formulation of Nonlinear Governing Equations: Finished linearizing varpi-component of Euler)
(Finished linearizing azimuthal component of Euler equation)
Line 65: Line 65:




If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become,
If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become:
 
===Linearizing Radial Component of Euler Equation===
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 79: Line 81:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi}</math>
<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math>
   </td>
   </td>
</tr>
</tr>
Line 96: Line 98:
<math>~- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}  
<math>~- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}  
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0}  \biggr)  
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0}  \biggr)  
- \frac{\partial \Phi_0}{\partial\varpi}</math>
- \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math>
   </td>
   </td>
</tr>
</tr>
Line 104: Line 106:
<math>~\Rightarrow~~~~
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
{\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi}  
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
+ \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr]  
+ \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr]  
+ \frac{\partial \Phi^'}{\partial \varpi}
</math>
</math>
   </td>
   </td>
Line 114: Line 117:
   <td align="left">
   <td align="left">
<math>~\biggl\{  \varpi ( {\dot\varphi}_0)^2  
<math>~\biggl\{  \varpi ( {\dot\varphi}_0)^2  
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]
- \frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}  
- \frac{\partial \Phi_0}{\partial\varpi} \biggr\}
- \frac{\partial \Phi_0}{\partial\varpi} \biggr\}
</math>
</math>
Line 124: Line 127:
<math>~\Rightarrow~~~~
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\frac{\partial {\dot\varpi}^'}{\partial t} +  
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
{\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi}  
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
+ \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr]  
+ \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial \varpi}
</math>
</math>
   </td>
   </td>
Line 137: Line 140:
   </td>
   </td>
</tr>
</tr>
</table>
</div>
This last expression has been obtained by recognizing that, in the next-to-last expression: (1) The terms inside the curly braces on the right-hand side collectively provide a statement of equilibrium (in the radial-coordinate direction) in the initial, unperturbed configuration and therefore the terms sum to zero; and (2) the terms inside square brackets on the left-hand side can be rewritten in a more compact form because we have adopted a polytropic equation of state to build the unperturbed initial equilibrium configuration and are examining only adiabatic perturbations with <math>~\gamma = (n+1)/n</math>, in which case,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\nabla P_0}{P_0} = \frac{(n+1)}{n} \cdot \frac{\nabla \rho_0}{\rho_0} \, ,</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~\frac{P^'}{P_0} = \frac{\gamma \rho^'}{\rho_0} \, .</math>
  </td>
</tr>
</table>
</div>
===Linearizing Azimuthal Component of Euler Equation===
Keeping in mind that the initial equilibrium configuration is axisymmetric &#8212; that is, equilibrium parameters exhibit no variation in the azimuthal direction &#8212; and, in addition, <math>~\dot\varphi_0</math> exhibits no variation in the vertical direction, we have,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( {\dot\varpi}^') \frac{\partial (\varpi\dot\varphi_0)}{\partial\varpi}  +
( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} +
( {\dot\varpi}^') {\dot\varphi_0} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{1}{\varpi} \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial \varphi} + \frac{\partial \Phi^'}{\partial \varphi} \biggr]</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} +
( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} +
\frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr]
\, .</math>
  </td>
</tr>
</table>
</table>
</div>
</div>


=See Also=
=See Also=




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 23:40, 11 March 2016


Linearized Equations in Cylindrical Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Eulerian Formulation of Nonlinear Governing Equations

From our more detailed, accompanying discussion we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.


<math>\varpi</math> Component of Euler Equation

<math> \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>


<math>\varphi</math> Component of Euler Equation


<math> \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>


<math>z</math> Component of Euler Equation

<math> \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>


Equation of Continuity

<math> \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>

These match, for example, equations (3.1) - (3.4) of Papaloizou & Pringle (1984, MNRAS, 208, 721-750), hereafter, PPI.


If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become:

Linearizing Radial Component of Euler Equation

<math>~\frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( { {\dot\varphi}_0 + {\dot\varphi}^'})^2 </math>

<math>~=</math>

<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( {\dot\varphi}_0)^2 - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')</math>

<math>~=</math>

<math>~- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi} - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0} \biggr) - \frac{\partial (\Phi_0+\Phi^')}{\partial\varpi}</math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr] + \frac{\partial \Phi^'}{\partial \varpi} </math>

<math>~=</math>

<math>~\biggl\{ \varpi ( {\dot\varphi}_0)^2 - \frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi} \biggr\} </math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] + \frac{\partial \Phi^'}{\partial \varpi} </math>

<math>~=</math>

<math>~0 \, . </math>

This last expression has been obtained by recognizing that, in the next-to-last expression: (1) The terms inside the curly braces on the right-hand side collectively provide a statement of equilibrium (in the radial-coordinate direction) in the initial, unperturbed configuration and therefore the terms sum to zero; and (2) the terms inside square brackets on the left-hand side can be rewritten in a more compact form because we have adopted a polytropic equation of state to build the unperturbed initial equilibrium configuration and are examining only adiabatic perturbations with <math>~\gamma = (n+1)/n</math>, in which case,

<math>~\frac{\nabla P_0}{P_0} = \frac{(n+1)}{n} \cdot \frac{\nabla \rho_0}{\rho_0} \, ,</math>

      and      

<math>~\frac{P^'}{P_0} = \frac{\gamma \rho^'}{\rho_0} \, .</math>


Linearizing Azimuthal Component of Euler Equation

Keeping in mind that the initial equilibrium configuration is axisymmetric — that is, equilibrium parameters exhibit no variation in the azimuthal direction — and, in addition, <math>~\dot\varphi_0</math> exhibits no variation in the vertical direction, we have,

<math>~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( {\dot\varpi}^') \frac{\partial (\varpi\dot\varphi_0)}{\partial\varpi} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + ( {\dot\varpi}^') {\dot\varphi_0} </math>

<math>~=</math>

<math>~- \frac{1}{\varpi} \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial \varphi} + \frac{\partial \Phi^'}{\partial \varphi} \biggr]</math>

<math>~\Rightarrow ~~~~\frac{\partial (\varpi {\dot\varphi}^')}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^')}{\partial\varphi} + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'}{\rho_0}\biggr)+ \frac{\partial \Phi^'}{\partial \varphi} \biggr] \, .</math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation