Difference between revisions of "User:Tohline/Apps/SMS"
(→Equation of State: Matching equation (10)) |
(→Equation of State: Derivation) |
||
Line 9: | Line 9: | ||
Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our [[User:Tohline/SR#Equation_of_State|introductory discussion of ''supplemental relations'']] and closely parallels [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5_3#Envelope|our review of the properties of the envelope]] that [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M E. A. Milne (1930, MNRAS, 91, 4)] used to construct a bipolytropic sphere. | Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our [[User:Tohline/SR#Equation_of_State|introductory discussion of ''supplemental relations'']] and closely parallels [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5_3#Envelope|our review of the properties of the envelope]] that [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M E. A. Milne (1930, MNRAS, 91, 4)] used to construct a bipolytropic sphere. | ||
===Expression for Total Pressure=== | |||
Ignoring the component due to a degenerate electron gas, <math>~P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components: a component of ideal gas pressure, and a component of radiation pressure. That is, in BAC84 the total pressure is given by the expression, | Ignoring the component due to a degenerate electron gas, <math>~P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components: a component of ideal gas pressure, and a component of radiation pressure. That is, in BAC84 the total pressure is given by the expression, | ||
<div align="center"> | <div align="center"> | ||
Line 91: | Line 92: | ||
</div> | </div> | ||
===Ratio of Radiation Pressure to Gas Pressure === | |||
Following [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)], we have defined the parameter, <math>~\beta</math>, as the ratio of gas pressure to total pressure. That is, in the context of BAC84, we have, | Following [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)], we have defined the parameter, <math>~\beta</math>, as the ratio of gas pressure to total pressure. That is, in the context of BAC84, we have, | ||
<div align="center"> | <div align="center"> | ||
Line 116: | Line 118: | ||
which is precisely the definition provided in equation (5) of BAC84. | which is precisely the definition provided in equation (5) of BAC84. | ||
===Mass Normalization=== | |||
Now, according to BAC84 (see their equation 8), when the total pressure is written in polytropic form — specifically, if we set, | Now, according to BAC84 (see their equation 8), when the total pressure is written in polytropic form — specifically, if we set, | ||
<div align="center"> | <div align="center"> | ||
Line 127: | Line 130: | ||
</div> | </div> | ||
It is convenient to rewrite this expression in the form, | |||
<div align="center"> | |||
<math>~M_u = M_{u,3} \biggl(\frac{K}{c^2}\biggr)^{(n_p-3)/2} \, ,</math> | |||
</div> | |||
and to determine, first, an expression for the mass-normalization when <math>~n_p = 3</math>, namely, | |||
<div align="center"> | |||
<math>~M_{u,3} \equiv \biggl( \frac{K}{G}\biggr)^{3/2} .</math> | |||
</div> | |||
====Polytropic Index Equals 3==== | |||
Referencing our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5_3#HighlightedExpressions|separate discussion of Milne's (1930) work]], when <math>~n_p = 3</math>, the polytropic constant is related to the relevant set of physical parameters via the relation, | |||
<div align="center"> | <div align="center"> | ||
Line 150: | Line 165: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~M_{u,3}^{2}</math> | <math>~M_{u,3}^{2} = \biggl(\frac{K}{G}\biggr)^3</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 173: | Line 188: | ||
</table> | </table> | ||
</div> | </div> | ||
When radiation pressure significantly dominates over gas pressure — that is, in the limit <math>~\sigma >> 1</math> — the factor of <math>~(1+\sigma^{-1})^3 \ | When radiation pressure significantly dominates over gas pressure — that is, in the limit <math>~\sigma >> 1</math> — the factor of <math>~(1+\sigma^{-1})^3 \approx 1</math>, and we see that this expression for <math>~M_{u,3}^2</math> exactly matches equation (10) of BAC84. | ||
====Polytropic Index Slightly Less Than 3==== | |||
More generally, equating the two expressions for the total pressure and drawing (twice) on the expression for <math>~\sigma</math> provided above, we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~K\rho^{(1 + 1/n_p)}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~Y_T n k T + \frac{a_\mathrm{rad}}{3} T^4 </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{a_\mathrm{rad}}{3} (1+\sigma^{-1})T^4 </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{a_\mathrm{rad}}{3} (1+\sigma^{-1})\biggl[ \frac{3Y_T n k \sigma}{a_\mathrm{rad}} \biggr]^{4/3} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{3}{a_\mathrm{rad}} \biggr)^{1/3}(1+\sigma^{-1})\biggl[ Y_T n k \sigma \biggr]^{4/3} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Now, from above we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~1 + \frac{1}{n_p} = \Gamma</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{4}{3} + \frac{1}{6\sigma} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
so the lefthand-side of this last expression can be written as, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~K\rho^{(1+1/n_p)}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~K\rho^{(4/3+1/6\sigma)} = K(m_B n)^{4/3} \rho^{1/6\sigma} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
This means that, for any <math>~\sigma >> 1</math>, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~K </math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{3}{a_\mathrm{rad}} \biggr)^{1/3}(1+\sigma^{-1})\biggl[ \frac{Y_T k \sigma}{m_B} \biggr]^{4/3} \rho^{-1/6\sigma} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
This matches exactly expression (7) in BAC84. Again from above — and continuing to assume <math>~\sigma >> 1</math> — we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~1 + \frac{1}{n_p} \approx \frac{4}{3} + \frac{1}{6\sigma} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~~~~\Rightarrow ~~~~</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{n_p} \approx \frac{1}{3}\biggl(1 + \frac{1}{2\sigma}\biggr) </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~~~\Rightarrow ~~~~</math> | |||
</td> | |||
<td align="left"> | |||
<math>~n_p \approx 3\biggl(1 + \frac{1}{2\sigma}\biggr)^{-1} \approx 3\biggl(1 - \frac{1}{2\sigma}\biggr)</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~~~\Rightarrow ~~~~</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl(\frac{n_p-3}{2}\biggr) \approx - \frac{3}{4\sigma} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 04:00, 18 December 2015
Rotating, Supermassive Stars
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we draw upon the work of J. R. Bond, W. D. Arnett, & B. J. Carr (1984, ApJ, 380, 825; hereafter BAC84) who were among the first to seriously address the question of the fate of very massive (stellar) objects.
Equation of State
Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our introductory discussion of supplemental relations and closely parallels our review of the properties of the envelope that E. A. Milne (1930, MNRAS, 91, 4) used to construct a bipolytropic sphere.
Expression for Total Pressure
Ignoring the component due to a degenerate electron gas, <math>~P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components: a component of ideal gas pressure, and a component of radiation pressure. That is, in BAC84 the total pressure is given by the expression,
<math>~P</math> |
<math>~=</math> |
<math>~P_\mathrm{gas} + P_\mathrm{rad} \, ,</math> |
where,
Ideal Gas | Radiation | ||||
|
|
Now, BAC84 define the rest-mass density in terms of the mean baryon mass, <math>~m_B</math>, via the expression, <math>~\rho = m_B n</math>, and write (see their equation 1),
<math>~P</math> |
<math>~=</math> |
<math>~Y_T n k T + \frac{1}{3}a_\mathrm{rad} T^4 \, .</math> |
In converting from our notation to theirs we conclude, therefore, that,
<math>~\frac{\Re}{\bar{\mu}} (m_B n) T</math> |
<math>~=</math> |
<math>~Y_T n k T </math> |
<math>~\Rightarrow ~~~~ Y_T </math> |
<math>~=</math> |
<math>~\frac{\Re}{k} \cdot \frac{m_B}{\bar{\mu}} \, .</math> |
Ratio of Radiation Pressure to Gas Pressure
Following Milne (1930), we have defined the parameter, <math>~\beta</math>, as the ratio of gas pressure to total pressure. That is, in the context of BAC84, we have,
<math>\beta \equiv \frac{P_\mathrm{gas} }{P} \, ,</math>
in which case, also,
<math>\frac{P_\mathrm{rad}}{P} = 1-\beta </math> and <math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}} = \frac{\beta}{1-\beta} \, .</math>
Using a different notation, BAC84 (see their equation 5) define <math>~\sigma</math> as the ratio of the radiation pressure to the gas pressure. Therefore, in converting from our notation to theirs we have,
<math>\sigma = \frac{1-\beta}{\beta} ~~~~\Rightarrow ~~~~ \beta = (1 + \sigma)^{-1} \, , </math>
as well as,
<math>\sigma = \frac{P_\mathrm{rad}}{P_\mathrm{gas}} = \frac{a_\mathrm{rad} T^3}{3} \cdot \frac{\bar\mu}{(\Re m_B)n} = \frac{a_\mathrm{rad} T^3}{3Y_T n k} \, ,</math>
which is precisely the definition provided in equation (5) of BAC84.
Mass Normalization
Now, according to BAC84 (see their equation 8), when the total pressure is written in polytropic form — specifically, if we set,
<math>P = K\rho^{(1+1/n_p)} </math>
— the mass-scaling for relativistic configurations will depend on <math>~G</math>, <math>~c</math>, <math>~K</math>, and <math>~n_p</math> via the expression,
<math>~M_u = K^{n_p/2} G^{-3/2} c^{3-n_p} = \biggl( \frac{K}{G}\biggr)^{3/2} \biggl(\frac{K}{c^2}\biggr)^{(n_p-3)/2} \, .</math>
It is convenient to rewrite this expression in the form,
<math>~M_u = M_{u,3} \biggl(\frac{K}{c^2}\biggr)^{(n_p-3)/2} \, ,</math>
and to determine, first, an expression for the mass-normalization when <math>~n_p = 3</math>, namely,
<math>~M_{u,3} \equiv \biggl( \frac{K}{G}\biggr)^{3/2} .</math>
Polytropic Index Equals 3
Referencing our separate discussion of Milne's (1930) work, when <math>~n_p = 3</math>, the polytropic constant is related to the relevant set of physical parameters via the relation,
<math>~K</math> |
<math>~=</math> |
<math>~\biggl[ \biggl( \frac{\Re}{\bar\mu}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \, .</math> |
In terms of the BAC84 terminology, this means that,
<math>~M_{u,3}^{2} = \biggl(\frac{K}{G}\biggr)^3</math> |
<math>~=</math> |
<math>~\biggl( \frac{\Re}{\bar\mu}\biggr)^4 \biggl[\frac{1-\beta}{\beta^4}\biggr] \frac{3}{G^3 a_\mathrm{rad}} </math> |
|
<math>~=</math> |
<math>~\biggl( \frac{k Y_T}{m_B}\biggr)^4 \biggl[\sigma^4(1+\sigma^{-1})^3\biggr] \frac{3}{G^3 a_\mathrm{rad}} \, .</math> |
When radiation pressure significantly dominates over gas pressure — that is, in the limit <math>~\sigma >> 1</math> — the factor of <math>~(1+\sigma^{-1})^3 \approx 1</math>, and we see that this expression for <math>~M_{u,3}^2</math> exactly matches equation (10) of BAC84.
Polytropic Index Slightly Less Than 3
More generally, equating the two expressions for the total pressure and drawing (twice) on the expression for <math>~\sigma</math> provided above, we have,
<math>~K\rho^{(1 + 1/n_p)}</math> |
<math>~=</math> |
<math>~Y_T n k T + \frac{a_\mathrm{rad}}{3} T^4 </math> |
|
<math>~=</math> |
<math>~\frac{a_\mathrm{rad}}{3} (1+\sigma^{-1})T^4 </math> |
|
<math>~=</math> |
<math>~\frac{a_\mathrm{rad}}{3} (1+\sigma^{-1})\biggl[ \frac{3Y_T n k \sigma}{a_\mathrm{rad}} \biggr]^{4/3} </math> |
|
<math>~=</math> |
<math>~\biggl( \frac{3}{a_\mathrm{rad}} \biggr)^{1/3}(1+\sigma^{-1})\biggl[ Y_T n k \sigma \biggr]^{4/3} \, .</math> |
Now, from above we have,
<math>~1 + \frac{1}{n_p} = \Gamma</math> |
<math>~\approx</math> |
<math>~\frac{4}{3} + \frac{1}{6\sigma} \, ,</math> |
so the lefthand-side of this last expression can be written as,
<math>~K\rho^{(1+1/n_p)}</math> |
<math>~\approx</math> |
<math>~K\rho^{(4/3+1/6\sigma)} = K(m_B n)^{4/3} \rho^{1/6\sigma} \, .</math> |
This means that, for any <math>~\sigma >> 1</math>,
<math>~K </math> |
<math>~\approx</math> |
<math>~\biggl( \frac{3}{a_\mathrm{rad}} \biggr)^{1/3}(1+\sigma^{-1})\biggl[ \frac{Y_T k \sigma}{m_B} \biggr]^{4/3} \rho^{-1/6\sigma} \, .</math> |
This matches exactly expression (7) in BAC84. Again from above — and continuing to assume <math>~\sigma >> 1</math> — we have,
<math>~1 + \frac{1}{n_p} \approx \frac{4}{3} + \frac{1}{6\sigma} </math> |
<math>~~~~\Rightarrow ~~~~</math> |
<math>~\frac{1}{n_p} \approx \frac{1}{3}\biggl(1 + \frac{1}{2\sigma}\biggr) </math> |
|
<math>~~~~\Rightarrow ~~~~</math> |
<math>~n_p \approx 3\biggl(1 + \frac{1}{2\sigma}\biggr)^{-1} \approx 3\biggl(1 - \frac{1}{2\sigma}\biggr)</math> |
|
<math>~~~~\Rightarrow ~~~~</math> |
<math>~\biggl(\frac{n_p-3}{2}\biggr) \approx - \frac{3}{4\sigma} \, .</math> |
© 2014 - 2021 by Joel E. Tohline |