Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids"
(→Oblate Spheroids (a_1 = a_2 > a_3): Modify only to make printed variables larger) |
(→Properties of Homogeneous Ellipsoids: Begin performing integrals to obtain acceleration at pole of prolate spheroid) |
||
Line 21: | Line 21: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
~\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr], | |||
</math><br /> | </math><br /> | ||
Line 307: | Line 307: | ||
====Prolate Spheroids <math>(a_1 > a_2 = a_3)</math>==== | ====Prolate Spheroids <math>(a_1 > a_2 = a_3)</math>==== | ||
If the shortest axis | If the shortest axis <math>~(a_3)</math> and the intermediate axis <math>~(a_2)</math> of the ellipsoid are equal to one another, then a cross-section in the <math>~x-y</math> plane of the object presents a circle of radius <math>~a_3</math> and the object is referred to as a '''prolate spheroid'''. For homogeneous prolate spheroids, evaluation of the integrals defining <math>~A_i</math> and <math>~I_\mathrm{BT}</math> gives, | ||
<table align="center" border=0 cellpadding="3"> | <table align="center" border=0 cellpadding="3"> | ||
Line 313: | Line 313: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
A_1 | ~A_1 | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
= | ~= | ||
</math> | </math> | ||
</td> | </td> | ||
Line 331: | Line 331: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
A_2 | ~A_2 | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
= | ~= | ||
</math> | </math> | ||
</td> | </td> | ||
Line 349: | Line 349: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
A_3 | ~A_3 | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
= | ~= | ||
</math> | </math> | ||
</td> | </td> | ||
Line 367: | Line 367: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
I_\mathrm{BT} | ~I_\mathrm{BT} | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
= | ~= | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~ | ||
A_1 + 2(1-e^2)A_2 = \ln\biggl[ \frac{1+e}{1-e} \biggr]\frac{(1-e^2)}{e} ~~, | A_1 + 2(1-e^2)A_2 = \ln\biggl[ \frac{1+e}{1-e} \biggr]\frac{(1-e^2)}{e} ~~, | ||
</math> | </math> | ||
Line 389: | Line 389: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
e \equiv \biggl[1 - \biggl(\frac{a_3}{a_1}\biggr)^2 \biggr]^{1/2} ~~. | ~e \equiv \biggl[1 - \biggl(\frac{a_3}{a_1}\biggr)^2 \biggr]^{1/2} ~~. | ||
</math> | |||
</div> | |||
==Acceleration at the Pole== | |||
===Prolate Spheroids=== | |||
In our above review, for consistency, we assumed that the longest axis of the ellipsoid was aligned with the <math>~x</math>-axis in all cases — for prolate spheroids as well as for oblate spheroids and for the more generic, triaxial ellipsoids. In this discussion, in order to better align with the operational features of a standard cylindrical coordinate system, we will orient the prolate-spheroidal configuration such that its major axis and, hence, its axis of symmetry aligns with the <math>~z</math>-axis while the center of the spheroid remains at the center of the (cylindrical) coordinate grid. In this case, the surface will be defined by the ellipse, | |||
<div align="center"> | |||
<math>~\frac{\varpi^2}{a_3^2} + \frac{z^2}{a_1^2} = 1 ~~~~\Rightarrow ~~~~ \varpi = a_3\sqrt{1-z^2/a_1^2} \, ,</math> | |||
</div> | |||
and the gravitational potential will be given by the expression, | |||
<div align="center"> | |||
<math> | |||
~\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 z^2 + A_3 \varpi^2 \biggr) \biggr]. | |||
</math> | |||
</div> | |||
The magnitude of the gravitational acceleration at the pole <math>~(\varpi, z) = (0, a_1)</math> of this prolate spheroid can be obtained from the gravitational potential via the expression, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{A} \equiv \biggl|- \frac{\partial \Phi}{\partial z}\biggr|_{a_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2\pi G \rho A_1 a_1 \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, [[User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids#Prolate_Spheroids_.28a1_.3E_a2_.3D_a3.29|as above]], | |||
<table align="center" border=0 cellpadding="3"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
~A_1 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
~= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\ln\biggl[ \frac{1+e}{1-e} \biggr] \frac{(1-e^2)}{e^3} - \frac{2(1-e^2)}{e^2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
We should also be able to derive this expression for <math>~\mathcal{A}</math> by integrating the <math>~z</math>-component of the differential acceleration over the mass distribution, that is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{A}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\int \biggl[ \frac{G }{r^2} \cdot \frac{z}{r} \biggr] dm = \int \biggl[ \frac{zG }{r^3} \biggr] 2\pi \varpi d\varpi dz</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2\pi G\rho \int^{a_1}_{-a_1} zdz \int_0^{a_3\sqrt{1-z^2/a_1^2}} [\varpi^2+(z-a_1)^2]^{-3/2}\varpi d\varpi \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where the distance, <math>~r</math>, has been measured from the pole, that is, | |||
<div align="center"> | |||
<math>~r^2 = \varpi^2 + (z-a_1)^2 \, .</math> | |||
</div> | |||
Performing the integral over <math>~\varpi</math> gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{A}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2\pi G\rho \int^{a_1}_{-a_1} zdz \biggl\{ -[\varpi^2+(z-a_1)^2]^{-1/2} \biggr\}_0^{a_3\sqrt{1-z^2/a_1^2}} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2\pi G\rho \int^{a_1}_{-a_1} zdz \biggl\{ \frac{1}{z - a_1} -\biggl[ a_3^2 \biggl(1-\frac{z^2}{a_1^2} \biggr) | |||
+ a_1^2\biggl(1-\frac{z}{a_1}\biggr)^2 \biggr]^{-1/2} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - 2\pi G\rho a_1 \int^{1}_{-1} d\zeta \biggl\{ \frac{\zeta}{1-\zeta } + \zeta\biggl[ \biggl(\frac{a_3}{a_1}\biggr)^2 \biggl(1-\zeta^2 \biggr) | |||
+ \biggl(1-\zeta\biggr)^2 \biggr]^{-1/2} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - 2\pi G\rho a_1 \int^{1}_{-1} d\zeta \biggl\{ \frac{\zeta}{1-\zeta } | |||
+ \zeta [ (2-e^2) - 2\zeta + e^2\zeta^2 ]^{-1/2} | |||
\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
For later reference, we will identify the expression inside the curly braces as the function, <math>~\mathcal{Z}</math>; specifically, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{Z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\zeta}{1-\zeta } + \zeta [ (2-e^2) - 2\zeta + e^2\zeta^2 ]^{-1/2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\zeta}{1-\zeta } + \frac{\zeta}{\sqrt{X}} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, in an effort to line up with notation found in integral tables, in this last expression we have used the notation, <math>~X \equiv \sqrt{a + b\zeta + c\zeta^2}</math> and, in our case, | |||
<div align="center"> | |||
<math>a \equiv (2-e^2)\, ,</math> | |||
<math>b \equiv -2\, ,</math> and | |||
<math>c \equiv e^2\, .</math> | |||
</div> | |||
We find that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\int_{-1}^1 \mathcal{Z} d\zeta</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ -\zeta - \ln(1-\zeta) + \frac{\sqrt{X}}{c} \biggr\}_{-1}^1 | |||
-\frac{b}{2c}\int_{-1}^1 \frac{d\zeta}{\sqrt{X}} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ -\zeta - \ln(1-\zeta) + \frac{\sqrt{X}}{c} \biggr\}_{-1}^1 | |||
-\frac{b}{2c}\biggl\{ \frac{1}{\sqrt{c}} \ln\biggl[ 2\sqrt{cX} + 2c\zeta + b \biggr]\biggr\}_{-1}^1 | |||
</math> | </math> | ||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ -\zeta - \ln(1-\zeta) + \frac{\sqrt{(2-e^2) - 2\zeta + e^2\zeta^2}}{e^2} | |||
+\frac{1}{e^3}\ln\biggl[ 2\sqrt{e^2[(2-e^2) - 2\zeta + e^2\zeta^2]} + 2e^2\zeta -2 \biggr]\biggr\}_{-1}^1 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
Revision as of 00:20, 3 September 2015
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Properties of Homogeneous Ellipsoids
Gravitational Potential
The Defining Integral Expressions
As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass <math>~\rho</math><math>(\vec{x})</math> can be derived from the gradient of a scalar potential <math>~\Phi</math><math>(\vec{x})</math> defined as follows:
<math> \Phi(\vec{x}) \equiv - \int \frac{G \rho(\vec{x}')}{|\vec{x}' - \vec{x}|} d^3 x' . </math>
As has been explicitly demonstrated in Chapter 3 of EFE and summarized in Table 2-2 (p. 57) of BT87, for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form. Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>(x,y,z) = (a_1,a_2,a_3)</math>,
<math>
~\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr],
</math>
[ EFE, Chapter 3, Eq. (40)1,2 ]
[ BT87, Chapter 2, Table 2-2 ]
where,
<math> A_i </math> |
<math> \equiv </math> |
<math> a_1 a_2 a_3 \int_0^\infty \frac{du}{\Delta (a_i^2 + u )} , </math> |
<math> I_\mathrm{BT} </math> |
<math> \equiv </math> |
<math> \frac{a_2 a_3}{a_1} \int_0^\infty \frac{du}{\Delta} = A_1 + A_2\biggl(\frac{a_2}{a_1}\biggr)^2+ A_3\biggl(\frac{a_3}{a_1}\biggr)^2 , </math> |
<math> \Delta </math> |
<math> \equiv </math> |
<math> \biggl[ (a_1^2 + u)(a_2^2 + u)(a_3^2 + u) \biggr]^{1/2} . </math> |
Evaluation of Coefficients
The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be evaluated in terms of the incomplete elliptic integral of the first kind,
<math> F(\theta,k) \equiv \int_0^\theta \frac{d\theta '}{\sqrt{1 - k^2 \sin^2\theta '}} ~~ , </math>
and/or the incomplete elliptic integral of the second kind,
<math> E(\theta,k) \equiv \int_0^\theta {\sqrt{1 - k^2 \sin^2\theta '}}~d\theta ' ~~ , </math>
where, for our particular problem,
<math>
\theta \equiv \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr) ,
</math>
<math>
k \equiv \biggl[\frac{a_1^2 - a_2^2}{a_1^2 - a_3^2} \biggr]^{1/2} ,
</math>
[ EFE, Chapter 3, Eq. (32) ]
or the integrals can be evaluated in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).
Triaxial Configurations <math>(a_1 > a_2 > a_3)</math>
If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>,
<math> A_1 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] ~~; </math> |
<math> A_2 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{E(\theta,k) - (1-k^2)F(\theta,k) - (a_3/a_2)k^2\sin\theta}{k^2 (1-k^2) \sin^3\theta}\biggr] ~~; </math> |
<math> A_3 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{(a_2/a_3) \sin\theta - E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] ~~; </math> |
<math> I_\mathrm{BT} </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~. </math> |
[ EFE, Chapter 3, Eqs. (33), (34) & (35) ]
Oblate Spheroids <math>~(a_1 = a_2 > a_3)</math>
If the longest axis, <math>~a_1</math>, and the intermediate axis, <math>~a_2</math>, of the ellipsoid are equal to one another, then an equatorial cross-section of the object presents a circle of radius <math>~a_1</math> and the object is referred to as an oblate spheroid. For homogeneous oblate spheroids, evaluation of the integrals defining <math>~A_i</math> and <math>~I_\mathrm{BT}</math> gives,
<math> ~A_1 </math> |
<math> ~= </math> |
<math> ~\frac{1}{e^2} \biggl[ \frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr] (1-e^2)^{1/2} ~~; </math> |
<math> ~A_2 </math> |
<math> ~= </math> |
<math> ~A_1 ~~; </math> |
<math> ~A_3 </math> |
<math> ~= </math> |
<math> ~\frac{2}{e^2} \biggl[ (1-e^2)^{-1/2} - \frac{\sin^{-1}e}{e} \biggr] (1-e^2)^{1/2} ~~; </math> |
<math> ~I_\mathrm{BT} </math> |
<math> ~= </math> |
<math> ~2A_1 + A_3 (1-e^2) = 2 (1-e^2)^{1/2} \biggl[ \frac{\sin^{-1}e}{e} \biggr] ~~, </math> |
where the eccentricity,
<math> ~e \equiv \biggl[1 - \biggl(\frac{a_3}{a_1}\biggr)^2 \biggr]^{1/2} ~~. </math>
Prolate Spheroids <math>(a_1 > a_2 = a_3)</math>
If the shortest axis <math>~(a_3)</math> and the intermediate axis <math>~(a_2)</math> of the ellipsoid are equal to one another, then a cross-section in the <math>~x-y</math> plane of the object presents a circle of radius <math>~a_3</math> and the object is referred to as a prolate spheroid. For homogeneous prolate spheroids, evaluation of the integrals defining <math>~A_i</math> and <math>~I_\mathrm{BT}</math> gives,
<math> ~A_1 </math> |
<math> ~= </math> |
<math> \ln\biggl[ \frac{1+e}{1-e} \biggr] \frac{(1-e^2)}{e^3} - \frac{2(1-e^2)}{e^2} ~~; </math> |
<math> ~A_2 </math> |
<math> ~= </math> |
<math> \frac{1}{e^2} - \ln\biggl[ \frac{1+e}{1-e} \biggr]\frac{(1-e^2)}{2e^3} ~~; </math> |
<math> ~A_3 </math> |
<math> ~= </math> |
<math> A_2 ~~; </math> |
<math> ~I_\mathrm{BT} </math> |
<math> ~= </math> |
<math>~ A_1 + 2(1-e^2)A_2 = \ln\biggl[ \frac{1+e}{1-e} \biggr]\frac{(1-e^2)}{e} ~~, </math> |
[ EFE, Chapter 3, Eq. (38) ]
where, again, the eccentricity,
<math> ~e \equiv \biggl[1 - \biggl(\frac{a_3}{a_1}\biggr)^2 \biggr]^{1/2} ~~. </math>
Acceleration at the Pole
Prolate Spheroids
In our above review, for consistency, we assumed that the longest axis of the ellipsoid was aligned with the <math>~x</math>-axis in all cases — for prolate spheroids as well as for oblate spheroids and for the more generic, triaxial ellipsoids. In this discussion, in order to better align with the operational features of a standard cylindrical coordinate system, we will orient the prolate-spheroidal configuration such that its major axis and, hence, its axis of symmetry aligns with the <math>~z</math>-axis while the center of the spheroid remains at the center of the (cylindrical) coordinate grid. In this case, the surface will be defined by the ellipse,
<math>~\frac{\varpi^2}{a_3^2} + \frac{z^2}{a_1^2} = 1 ~~~~\Rightarrow ~~~~ \varpi = a_3\sqrt{1-z^2/a_1^2} \, ,</math>
and the gravitational potential will be given by the expression,
<math> ~\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 z^2 + A_3 \varpi^2 \biggr) \biggr]. </math>
The magnitude of the gravitational acceleration at the pole <math>~(\varpi, z) = (0, a_1)</math> of this prolate spheroid can be obtained from the gravitational potential via the expression,
<math>~\mathcal{A} \equiv \biggl|- \frac{\partial \Phi}{\partial z}\biggr|_{a_1}</math> |
<math>~=</math> |
<math>~2\pi G \rho A_1 a_1 \, ,</math> |
where, as above,
<math> ~A_1 </math> |
<math> ~= </math> |
<math> \ln\biggl[ \frac{1+e}{1-e} \biggr] \frac{(1-e^2)}{e^3} - \frac{2(1-e^2)}{e^2} \, . </math> |
We should also be able to derive this expression for <math>~\mathcal{A}</math> by integrating the <math>~z</math>-component of the differential acceleration over the mass distribution, that is,
<math>~\mathcal{A}</math> |
<math>~=</math> |
<math>~\int \biggl[ \frac{G }{r^2} \cdot \frac{z}{r} \biggr] dm = \int \biggl[ \frac{zG }{r^3} \biggr] 2\pi \varpi d\varpi dz</math> |
|
<math>~=</math> |
<math>~2\pi G\rho \int^{a_1}_{-a_1} zdz \int_0^{a_3\sqrt{1-z^2/a_1^2}} [\varpi^2+(z-a_1)^2]^{-3/2}\varpi d\varpi \, ,</math> |
where the distance, <math>~r</math>, has been measured from the pole, that is,
<math>~r^2 = \varpi^2 + (z-a_1)^2 \, .</math>
Performing the integral over <math>~\varpi</math> gives,
<math>~\mathcal{A}</math> |
<math>~=</math> |
<math>~2\pi G\rho \int^{a_1}_{-a_1} zdz \biggl\{ -[\varpi^2+(z-a_1)^2]^{-1/2} \biggr\}_0^{a_3\sqrt{1-z^2/a_1^2}} </math> |
|
<math>~=</math> |
<math>~2\pi G\rho \int^{a_1}_{-a_1} zdz \biggl\{ \frac{1}{z - a_1} -\biggl[ a_3^2 \biggl(1-\frac{z^2}{a_1^2} \biggr) + a_1^2\biggl(1-\frac{z}{a_1}\biggr)^2 \biggr]^{-1/2} \biggr\} </math> |
|
<math>~=</math> |
<math>~ - 2\pi G\rho a_1 \int^{1}_{-1} d\zeta \biggl\{ \frac{\zeta}{1-\zeta } + \zeta\biggl[ \biggl(\frac{a_3}{a_1}\biggr)^2 \biggl(1-\zeta^2 \biggr) + \biggl(1-\zeta\biggr)^2 \biggr]^{-1/2} \biggr\} </math> |
|
<math>~=</math> |
<math>~ - 2\pi G\rho a_1 \int^{1}_{-1} d\zeta \biggl\{ \frac{\zeta}{1-\zeta } + \zeta [ (2-e^2) - 2\zeta + e^2\zeta^2 ]^{-1/2} \biggr\} \, . </math> |
For later reference, we will identify the expression inside the curly braces as the function, <math>~\mathcal{Z}</math>; specifically,
<math>~\mathcal{Z}</math> |
<math>~\equiv</math> |
<math>~\frac{\zeta}{1-\zeta } + \zeta [ (2-e^2) - 2\zeta + e^2\zeta^2 ]^{-1/2} </math> |
|
<math>~=</math> |
<math>~\frac{\zeta}{1-\zeta } + \frac{\zeta}{\sqrt{X}} \, ,</math> |
where, in an effort to line up with notation found in integral tables, in this last expression we have used the notation, <math>~X \equiv \sqrt{a + b\zeta + c\zeta^2}</math> and, in our case,
<math>a \equiv (2-e^2)\, ,</math> <math>b \equiv -2\, ,</math> and <math>c \equiv e^2\, .</math>
We find that,
<math>~\int_{-1}^1 \mathcal{Z} d\zeta</math> |
<math>~=</math> |
<math>~\biggl\{ -\zeta - \ln(1-\zeta) + \frac{\sqrt{X}}{c} \biggr\}_{-1}^1 -\frac{b}{2c}\int_{-1}^1 \frac{d\zeta}{\sqrt{X}} </math> |
|
<math>~=</math> |
<math>~\biggl\{ -\zeta - \ln(1-\zeta) + \frac{\sqrt{X}}{c} \biggr\}_{-1}^1 -\frac{b}{2c}\biggl\{ \frac{1}{\sqrt{c}} \ln\biggl[ 2\sqrt{cX} + 2c\zeta + b \biggr]\biggr\}_{-1}^1 </math> |
|
<math>~=</math> |
<math>~\biggl\{ -\zeta - \ln(1-\zeta) + \frac{\sqrt{(2-e^2) - 2\zeta + e^2\zeta^2}}{e^2} +\frac{1}{e^3}\ln\biggl[ 2\sqrt{e^2[(2-e^2) - 2\zeta + e^2\zeta^2]} + 2e^2\zeta -2 \biggr]\biggr\}_{-1}^1 </math> |
See Also
Footnotes
- In EFE this equation is written in terms of a variable <math>I</math> instead of <math>I_\mathrm{BT}</math> as defined here. The two variables are related to one another straightforwardly through the expression, <math>I = I_\mathrm{BT} a_1^2</math>.
- Throughout EFE, Chandrasekhar adopts a sign convention for the scalar gravitational potential that is opposite to the sign convention being used here.
© 2014 - 2021 by Joel E. Tohline |