Difference between revisions of "User:Tohline/SR"
(→ZTF Gas in Relativistic Limit: Add equation reference to KW94) |
(→Time-Independent Problems: Identify numerous references that discuss asymptotic limits for degeneracy pressure) |
||
Line 72: | Line 72: | ||
</div> | </div> | ||
the zero-temperature Fermi (ZTF) equation of state describes the pressure-density behavior of a nonrelativistic (NR) degenerate electron gas. We can determine the expression for <math>~P_\mathrm{deg}</math> in this limit by writing the function, <math>~F(\chi)</math>, in terms of two relevant series expansions then keeping only the highest order terms. | the zero-temperature Fermi (ZTF) equation of state describes the pressure-density behavior of a nonrelativistic (NR) degenerate electron gas. We can determine the expression for <math>~P_\mathrm{deg}</math> in this limit by writing the function, <math>~F(\chi)</math>, in terms of two relevant series expansions — for the inverse hyperbolic sine function, see for example, the [http://en.wikipedia.org/wiki/Inverse_hyperbolic_function#Series_expansions Wikipedia presentation] — then keeping only the highest order terms. | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 156: | Line 156: | ||
</div> | </div> | ||
This agrees with, for example, the asymptotic form presented as equation (24) in §X.1 (p. 361) of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>]. Keeping only the leading term leads to the expression, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 211: | Line 211: | ||
</div> | </div> | ||
This matches, | This matches equation (27) in §X.1 (p. 362) of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>]; see also, equation (11.42) of [<b>[[User:Tohline/Appendix/References#H87|<font color="red">H87</font>]]</b>], equation (15.23) of [<b>[[User:Tohline/Appendix/References#KW94|<font color="red">KW94</font>]]</b>], and the upper expression labeled as equation (5.163) in [<b>[[User:Tohline/Appendix/References#P00|<font color="red">P00</font>]]</b>]. | ||
====ZTF Gas in Relativistic Limit==== | ====ZTF Gas in Relativistic Limit==== | ||
Line 221: | Line 221: | ||
</div> | </div> | ||
the zero-temperature Fermi (ZTF) equation of state describes the pressure-density behavior of a degenerate electron gas in the (special) relativistic limit (RL). We can determine the expression for <math>~P_\mathrm{deg}</math> in this limit by writing the function, <math>~F(\chi)</math>, in terms of two relevant series expansions then keeping only the highest order terms. | the zero-temperature Fermi (ZTF) equation of state describes the pressure-density behavior of a degenerate electron gas in the (special) relativistic limit (RL). We can determine the expression for <math>~P_\mathrm{deg}</math> in this limit by writing the function, <math>~F(\chi)</math>, in terms of two relevant series expansions — for the inverse hyperbolic sine function, see for example, [http://dlmf.nist.gov/4.38 NIST's ''Digital Library of Mathematical Functions''] — then keeping only the highest order terms. | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 284: | Line 284: | ||
</div> | </div> | ||
This agrees with, for example, the asymptotic form presented as equation (25) in §X.1 (p. 361) of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>]. Keeping only the leading term leads to the expression, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 326: | Line 326: | ||
</div> | </div> | ||
This matches, | This matches equation (28) in §X.1 (p. 362) of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>]; see also, equation (11.43) of [<b>[[User:Tohline/Appendix/References#H87|<font color="red">H87</font>]]</b>], equation (15.26) of [<b>[[User:Tohline/Appendix/References#KW94|<font color="red">KW94</font>]]</b>], and the lower expression labeled as equation (5.163) in [<b>[[User:Tohline/Appendix/References#P00|<font color="red">P00</font>]]</b>]. | ||
===Steady-state Flow-Field Specification=== | ===Steady-state Flow-Field Specification=== |
Revision as of 16:32, 14 July 2015
Supplemental Relations
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Examining the set of principal governing equations#Principal_Governing_Equations that describe adiabatic flows, we see that — apart from the independent variables <math>~t</math> and <math>~\vec{x}</math> — the equations involve the vector velocity <math>~\vec{v}</math>, and the four scalar variables, <math>~\Phi</math>, <math>~P</math>, <math>~\rho</math>, and <math>~\epsilon</math>. Because the variables outnumber the equations by one, a supplemental relationship between the physical variables must be specified in order to close the set of equations. (If nonadiabatic flows are considered, additional supplemental relations must be specified because the scalar variables <math>~T</math> and <math>~s</math> enter the discussion as well.) Also, in order to complete the unique specification of a particular physical problem, either a steady-state flow field or initial conditions must be specified, depending on whether one is studying a time-independent (structure) or time-dependent (stability or dynamics) problem, respectively. Throughout this H_Book, the following strategy will be adopted in order to complete the physical specification of each examined system: (A) For time-independent problems, we will adopt a structural relationship between <math>~P</math> and <math>~\rho</math>, and specify a steady-state flow-field. (B) For time-dependent problems, we will adopt an equation of state, and specify initial conditions.
Time-Independent Problems
Barotropic Structure
For time-independent problems, a structural relationship between <math>~P</math> and <math>~\rho</math> is required to close the system of principal governing equations . [Tassoul (1978) refers to this as a "geometrical" rather than a "structural" relationship; see the discussion associated with his Chapter 4, Eq. 14.] Generally throughout this H_Book, we will assume that all time-independent configurations can be described as barotropic structures; that is, we will assume that <math>~P</math> is only a function of <math>~\rho</math> throughout such structures. More specifically, we generally will adopt one of the two analytically prescribable <math>~P(\rho)</math> relationships displayed in the first row of the following Table.
Barotropic Relations |
|||||||
---|---|---|---|---|---|---|---|
Polytropic | Zero-temperature Fermi (degenerate electron) Gas | ||||||
<math>~P = K_\mathrm{n} \rho^{1+1/n}</math> |
|
||||||
<math>~H = (n+1)K_\mathrm{n} \rho^{1/n}</math> |
<math> H = \frac{8A_\mathrm{F}}{B_\mathrm{F}} \biggl[(\chi^2 + 1)^{1/2} - 1 \biggr] </math> |
||||||
<math>~\rho = \biggl[ \frac{H}{(n+1)K_\mathrm{n}} \biggr]^n </math> |
<math> \rho = B_\mathrm{F} \biggl[\biggl(\frac{HB_\mathrm{F}}{8A_\mathrm{F}} + 1 \biggr)^{2} - 1 \biggr]^{3/2} </math> |
In the polytropic relation, the "polytropic index" <math>~n</math> and the "polytropic constant" <math>~K_\mathrm{n}</math> are assumed to be independent of both <math>~\vec{x}</math> and <math>~t</math>. In the zero-temperature Fermi gas relation, the two constants <math>~A_\mathrm{F}</math> and <math>~B_\mathrm{F}</math> are expressible in terms of various fundamental physical constants, as detailed in the accompanying variables appendix. This table also displays (2nd row) the enthalpy as a function of mass density, <math>~H(\rho)</math>, and (3rd row) the inverted relation <math>~\rho(H)</math> for both barotropic relations, where
<math>H = \int\frac{dP}{\rho}</math> .
In both cases, we have chosen an integration constant such that <math>~H</math> is zero when <math>~\rho</math> is zero.
Nonrelativistic ZTF Gas
At sufficiently low densities, specifically, when
<math>~\chi \ll 1 \, ,</math>
the zero-temperature Fermi (ZTF) equation of state describes the pressure-density behavior of a nonrelativistic (NR) degenerate electron gas. We can determine the expression for <math>~P_\mathrm{deg}</math> in this limit by writing the function, <math>~F(\chi)</math>, in terms of two relevant series expansions — for the inverse hyperbolic sine function, see for example, the Wikipedia presentation — then keeping only the highest order terms.
<math>~F(\chi)</math> |
<math>~=</math> |
<math>~- 3\chi \biggl(1 - \frac{2}{3}\chi^2 \biggr) \biggl( 1 + \frac{1}{2}\chi^2 - \frac{1}{2^3}\chi^4 +\frac{1}{2^4}\chi^6 - \frac{5}{2^7} \chi^8+ \cdots \biggr) +3 \displaystyle\sum_{m=0}^{\infty} \biggl[ \frac{(-1)^m (2m)!}{2^{2m}(m!)^2} \cdot \frac{\chi^{2m+1}}{(2m + 1)}\biggr] </math> |
|
<math>~=</math> |
<math>~- 3\chi \biggl( 1 + \frac{1}{2}\chi^2 - \frac{1}{2^3}\chi^4 +\frac{1}{2^4}\chi^6 - \frac{5}{2^7}\chi^8 + \cdots \biggr) + 2\chi^3 \biggl( 1 + \frac{1}{2}\chi^2 - \frac{1}{2^3}\chi^4 +\frac{1}{2^4}\chi^6 - \frac{5}{2^7}\chi^8 + \cdots \biggr) </math> |
|
|
<math>~ +3\biggl\{\chi - \frac{1}{6}\chi^3 + \frac{3}{2^3 \cdot 5} \chi^5 - \frac{5}{2^4\cdot 7} \chi^7 + \cdots \biggr\} </math> |
|
<math>~=</math> |
<math>~-3\chi + 3\chi + \chi^3\biggl(-\frac{3}{2} + 2 - \frac{1}{2} \biggr) + \chi^5 \biggl(\frac{3}{8} +1 +\frac{3^2}{2^3\cdot 5} \biggr)
+\chi^7 \biggl( -\frac{3}{2^4} -\frac{1}{2^2} - \frac{3\cdot 5}{2^4\cdot 7} \biggr) + \cdots </math> |
|
<math>~=</math> |
<math>~\chi^5 \biggl(\frac{15 + 40 + 9}{2^3\cdot 5} \biggr)
-\chi^7 \biggl( \frac{21 + 28 + 15}{2^4\cdot 7} \biggr) + \cancelto{0}{\cdots} </math> |
|
<math>~\approx</math> |
<math>~\chi^5 \biggl(\frac{2^3}{5} \biggr)
-\chi^7 \biggl( \frac{2^2}{7} \biggr) \, .</math> |
This agrees with, for example, the asymptotic form presented as equation (24) in §X.1 (p. 361) of [C67]. Keeping only the leading term leads to the expression,
<math>~P_\mathrm{deg}\biggr|_\mathrm{NR}</math> |
<math>~=</math> |
<math>~\frac{2^3}{5} A_F \biggl( \frac{\rho}{B_F}\biggr)^{5/3}</math> |
|
<math>~=</math> |
<math>~\frac{2^3}{5} \biggl( \frac{\pi m_e^4 c^5}{3h^3} \biggr) \biggl[ \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \mu_e \biggr]^{-5/3} \rho^{5/3}</math> |
|
<math>~=</math> |
<math>~\mu_e^{-5/3} \biggl[ \frac{2^9 \cdot 3^5 \pi^3}{2^{15}\cdot 3^3\cdot 5^3 \pi^5} \biggr]^{1/3} \biggl( \frac{m_e^4 c^5}{h^3} \biggr) \biggl( \frac{h}{m_e c} \biggr)^5 \biggl( \frac{\rho}{m_p}\biggr)^{5/3}</math> |
|
<math>~=</math> |
<math>~\frac{1}{2^2 \cdot 5}\biggl( \frac{3}{\pi} \biggr)^{2/3} \biggl( \frac{h^2}{m_e} \biggr) \biggl( \frac{\rho}{m_p \mu_e}\biggr)^{5/3} \, .</math> |
This matches equation (27) in §X.1 (p. 362) of [C67]; see also, equation (11.42) of [H87], equation (15.23) of [KW94], and the upper expression labeled as equation (5.163) in [P00].
ZTF Gas in Relativistic Limit
At sufficiently high densities, specifically, when
<math>~\chi \gg 1 \, ,</math>
the zero-temperature Fermi (ZTF) equation of state describes the pressure-density behavior of a degenerate electron gas in the (special) relativistic limit (RL). We can determine the expression for <math>~P_\mathrm{deg}</math> in this limit by writing the function, <math>~F(\chi)</math>, in terms of two relevant series expansions — for the inverse hyperbolic sine function, see for example, NIST's Digital Library of Mathematical Functions — then keeping only the highest order terms.
<math>~F(\chi)</math> |
<math>~=</math> |
<math>~\biggl(2\chi^4 - 3\chi^2 \biggr) \biggl( 1 + \frac{1}{2\chi^2} - \frac{1}{2^3\chi^4} +\frac{1}{2^4\chi^6} - \frac{5}{2^7\chi^8} + \cdots \biggr) +3 \biggl[ \ln(2\chi) + \frac{1}{2^2 \chi^2} - \frac{3}{2^5\chi^4} + \frac{5}{2^5\cdot 3\chi^6} - \cdots \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl( 2\chi^4 + \chi^2 - \frac{1}{2^2} +\frac{1}{2^3\chi^2} - \frac{5}{2^6\chi^4} + \cdots \biggr) - \biggl( 3\chi^2 + \frac{3}{2} - \frac{3}{2^3\chi^2} +\frac{3}{2^4\chi^4} + \cdots \biggr) </math> |
|
|
<math>~ + \biggl[ 3\ln(2\chi) + \frac{3}{2^2 \chi^2} - \frac{3^2}{2^5\chi^4} + \cdots \biggr] </math> |
|
<math>~=</math> |
<math>~ 2\chi^4 - 2 \chi^2 + 3\ln(2\chi) - \frac{7}{4} +\frac{5}{4\chi^2} - \frac{35}{2^6\chi^4} + \cdots </math> |
This agrees with, for example, the asymptotic form presented as equation (25) in §X.1 (p. 361) of [C67]. Keeping only the leading term leads to the expression,
<math>~P_\mathrm{deg}\biggr|_\mathrm{RL}</math> |
<math>~=</math> |
<math>~2 A_F \biggl( \frac{\rho}{B_F}\biggr)^{4/3}</math> |
|
<math>~=</math> |
<math>~2 \biggl[ \frac{\pi m_e^4 c^5}{3h^3} \biggr] \biggl[ \frac{8\pi m_p \mu_e}{3} \biggl( \frac{m_e c}{h}\biggr)^3\biggr]^{-4/3} \rho^{4/3}</math> |
|
<math>~=</math> |
<math>~\frac{1}{2^3}\biggl(\frac{3}{\pi}\biggr)^{1/3} (hc) \biggl(\frac{\rho}{m_p \mu_e}\biggr)^{4/3} \, .</math> |
This matches equation (28) in §X.1 (p. 362) of [C67]; see also, equation (11.43) of [H87], equation (15.26) of [KW94], and the lower expression labeled as equation (5.163) in [P00].
Steady-state Flow-Field Specification
A steady-state velocity flow-field must be specified for time-independent problems. The specification can be as simple as stating that <math>~\vec{v}=0</math> everywhere in space, or that the system has uniform ("solid body") rotation. Throughout the literature, efforts to generate equilibrium, axisymmetric configurations have adopted a variety of different simple rotation profiles. In this H_Book, the flow-field specification will generally vary from chapter to chapter.
Time-Dependent Problems
Equation of State
For time-dependent problems we usually will supplement the set of principal governing equations by adopting a relationship between the state variables <math>~P</math>, <math>~\rho</math>, and <math>~T</math> that is given by one of the expressions in the following Table, or by some combination of these expressions. (For example, we could write <math>~P_\mathrm{total} = P_\mathrm{gas} + P_\mathrm{deg} + P_\mathrm{rad}</math>.)
Analytic Equations of State |
Radiation Pressure | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ideal Gas | Degenerate Electron Gas | |||||||||||
|
|
|
||||||||||
Normalized Total Pressure: | ||||||||||||
|
In the so-called ideal gas equation of state, <math>~\Re</math> is the gas constant and <math>~\bar{\mu}</math> is the mean molecular weight of the gas. In the equation that gives the electron degeneracy pressure, <math>~A_\mathrm{F}</math> is the characteristic Fermi pressure and <math>~B_\mathrm{F}</math> is the characteristic Fermi density. And in the expression for the photon radiation pressure, <math>~a_\mathrm{rad}</math> is the radiation constant. The value of each of these identified physical constants can be found by simply scrolling the computer mouse over the symbol for the constant found in the text of this paragraph, and a definition of each constant can be found in the Variables Appendix of this H_Book.
All three of these equations are among the set of key physical equations that provide the foundation for our discussion of the structure, stability, and dynamics of self-gravitating systems. A discussion of the physical principles that underpin each of these relations can be found in any of a number of different published texts — see, for example, the set of parallel references identified in the Equations Appendix of this H_Book — or in the Wiki pages that can be accessed by clicking the linked "other forms" buttons in the above Table. See also Tassoul (1978) — specifically the discussion associated with his Chapter 4, Eq. 13 — for a more general statement related to the proper specification of a supplemental, equation of state relationship.
Initial Conditions
For time-dependent problems, the principal governing equations must be supplemented further through the specification of initial conditions. Frequently throughout this H_Book, we will select as initial conditions a specification of <math>~\rho(\vec{x}, t=0)</math>, <math>~P(\vec{x}, t=0)</math>, and <math>~\vec{v}(\vec{x}, t=0)</math> that, as a group themselves, define a static or steady-state equilibrium structure. Perturbation or computational fluid dynamic (CFD) techniques can be used to test the stability or nonlinear dynamical behavior of such structures.
© 2014 - 2021 by Joel E. Tohline |