User:Tohline/SSC/VirialEquilibrium/UniformDensity
Uniform-Density Sphere
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Review
In an introductory discussion of the virial equilibrium structure of spherically symmetric configurations — see especially the section titled, Energy Extrema — we deduced that a system's equilibrium radius, <math>~R_\mathrm{eq}</math>, measured relative to a reference length scale, <math>~R_0</math>, i.e., the dimensionless equilibrium radius,
<math>~\chi_\mathrm{eq} \equiv \frac{R_\mathrm{eq}}{R_0} \, ,</math>
is given by the root(s) of the following equation:
<math> 2C \chi^{-2} + ~ (1-\delta_{1\gamma_g})~3(\gamma_g-1) B\chi^{3 -3\gamma_g} +~ \delta_{1\gamma_g} B_I ~-~A\chi^{-1} -~ 3D\chi^3 = 0 \, , </math>
where the definitions of the various coefficients are,
<math>~A</math> |
<math>~\equiv</math> |
<math>\frac{3}{5} \frac{GM_\mathrm{tot} ^2}{R_0} \cdot \mathfrak{f}_W \, ,</math> |
<math>~B</math> |
<math>~\equiv</math> |
<math> \frac{K M_\mathrm{tot} }{(\gamma_g-1)} \biggl( \frac{3M_\mathrm{tot} }{4\pi R_0^3} \biggr)^{\gamma_g - 1} \cdot \mathfrak{f}_A = \frac{\bar{c_s}^2 M_\mathrm{tot} }{(\gamma_g - 1)} \cdot \mathfrak{f}_A \, , </math> |
<math>~B_I</math> |
<math>~\equiv</math> |
<math> 3c_s^2 M_\mathrm{tot} \cdot \mathfrak{f}_M \, , </math> |
<math>~C</math> |
<math>~\equiv</math> |
<math> \frac{5J^2}{4M_\mathrm{tot} R_0^2} \cdot \mathfrak{f}_T \, , </math> |
<math>~D</math> |
<math>~\equiv</math> |
<math> \frac{4}{3} \pi R_0^3 P_e \, . </math> |
Once the pressure exerted by the external medium (<math>~P_e</math>), and the configuration's mass (<math>~M_\mathrm{tot}</math>), angular momentum (<math>~J</math>), and specific entropy (via <math>~K</math>) — or, in the isothermal case, sound speed (<math>~c_s</math>) — have been specified, the values of all of the coefficients are known and <math>~\chi_\mathrm{eq}</math> can be determined.
Adiabatic Evolution of an Isolated Sphere
Here we seek to determine the equilibrium radius of a non-rotating configuration (<math>~J = 0</math>) that undergoes adiabatic compression/expansion (<math>\delta_{1\gamma_g} =~0</math>) and that is not confined by an external medium (<math>P_e = 0~</math>). In this case, the statement of virial equilibrium is simplified considerably. Specifically, <math>~\chi_\mathrm{eq}</math> is given by the root(s) of the equation,
<math> 3(\gamma_g-1) B\chi^{3 -3\gamma_g} ~-~A\chi^{-1} = 0 \, . </math>
In other words,
<math> R_\mathrm{eq} = R_0 \chi_\mathrm{eq} = \biggl[ \frac{3(\gamma_g-1) B}{A} \cdot R_0^{(3\gamma_g-4)} \biggr]^{1/(3\gamma_g-4)} = \biggl[ 5\biggl( \frac{3}{4\pi} \biggr)^{\gamma_g-1} \cdot \frac{KM^{(\gamma_g-2)}}{G} \biggr]^{1/(3\gamma_g-4)} \, . </math>
Accordingly, the equilibrium mass-radius relationship for adiabatic configurations of a given specific entropy is,
<math> M^{(\gamma_g - 2)} \propto R_\mathrm{eq}^{(3\gamma_g -4)} \, . </math>
Notice that, for <math>\gamma_g=2</math>, the equilibrium radius depends only on the specific entropy of the gas and is independent of the configuration's mass. Conversely, notice that, for <math>\gamma_g = 4/3</math>, the mass of the configuration is independent of the radius. For <math>\gamma_g</math> > <math> 2</math> or <math>\gamma_g </math>< <math>4/3</math>, configurations with larger mass (but the same specific entropy) have larger equilibrium radii. However, for <math>\gamma_g</math> in the range, <math>2</math> > <math>\gamma_g </math> > <math>4/3</math>, configurations with larger mass have smaller equilibrium radii. Note that the result obtained for the isothermal configuration could have been obtained by setting <math>\gamma_g = 1</math> in this adiabatic solution, because <math>K = c_s^2</math> when <math>\gamma_g = 1</math>.
It is also instructive to write the coefficient <math>B</math> in terms of the average sound speed as defined above. In this case,
<math> R_\mathrm{eq} = R_0 \biggl[ \frac{GM}{5 \bar{c_s}^2 R_0} \biggr]^{1/(4- 3\gamma_g)} \, , </math>
so the equilibrium radius of an isolated, nonrotating, uniform density, adiabatic sphere is,
<math> R_\mathrm{eq} = R_0 = \frac{GM}{5 \bar{c_s}^2 } \, . </math>
© 2014 - 2021 by Joel E. Tohline |